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Abstract
A part of rhizospheric bacteria are considered plant growth-promoting bacteria 
(PGPB) due to their positive effect on the plant growth and development. Plant 
growth-promoting bacteria based on their metabolic activity can be grouped as 
biofertilizers, fitostimulants, or biopesticides. These efficient bacteria due to 
various direct or indirect effects exerted on plants have crucial role in agricultural 
sustainability. Recently were reported diverse genera as PGPB like Acetobacter, 
Achromobacter, Arthrobacter, Azoarcus, Azospirillum, Azotobacter, Bacillus, 
Burkholderia, Frankia, Phyllobacterium, Pseudomonas, Serratia, and 
Rhizobium. Bacterial strains for this study were isolated from a natural habitat 
(raised bog) and agricultural environment. Selected bacterial strains based on 
16S rRNA gene sequence analysis were identified as Achromobacter spanius, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-7553-8_1&domain=pdf
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Delftia lacustris, Pseudomonas protegens, P. jessenii, and Acinetobacter lwoffii. 
These bacterial strains have different plant growth-promoting (PGP) activities 
like multi-stress resistances (temperature, pH, salinity) and others such as cellu-
lose, phytin, and lecithin degradation, alkaline phosphatase and alkaline protease 
activity, and siderophore production. The selected strains were tested on plants 
either alone or in consortia. Based on the reports, it was confirmed that Delftia 
lacustris BI5, P. jessenii BI7, bacterial strains, and the bacterial consortia P. jes-
senii BI7 and A. lwoffii BI13 showed positive effect due to their PGP character-
istics on wheat shoot growth under laboratory conditions. These promising 
strains have potential as inoculation agents in eco-friendly crop production con-
tributing to environmental sustainability.

Keywords
Rhizosphere · Microorganisms · Plant growth · Synergy · Crop production

1.1	 �Introduction

Plant growth-promoting bacteria (PGPB) are soil and rhizosphere bacteria that can 
promote plants growth through various direct and indirect mechanisms. These bacte-
ria based on their effect on plant growth and development, due to different metabolic 
activities, can be grouped as biofertilizers, phytostimulants, and biopesticides.

Bacteria with role in biofertilization can provide inaccessible nutrients for plants, 
due to atmospheric nitrogen fixing and phosphorus, iron or potassium solubilizing. 
They are able to increase the availability of nutrients through the decomposition of 
organic compounds, expected to enzymes such as phytase, acid or alkaline phospha-
tase, and esterase (Lü et al. 2005; Sarikhani et al. 2010). In iron insufficiency condi-
tions, iron could be solubilized by the production of iron-binding molecules like 
siderophores which can form Fe-siderophore complex, readily available to plants 
(Kumar et al. 2017b). Phytostimulants produce different phytohormones (auxins, 
gibberellins, cytokinins, and ethylene) and fulfil a role in plant growth promotion 
(Shukla 2019). Due to the synthetized hormones, these microbes can also improve 
plant tolerance in various abiotic stress circumstances (Gupta et  al. 2015). 
Biopesticides are able to control the growth of deleterious microorganisms due to 
the deliberation of different secondary metabolites or extracellular cell wall decom-
posing enzymes (cellulose, alkaline or neutral protease, siderophores, antibiotics, 
HCN, and induced systemic resistance) (El-Sayed et al. 2014; Akram et al. 2017; 
Barnawal et al. 2017).

From the recent observations were reported diverse genera as PGPB with impor-
tant role in different crop or vegetable nutrition like Agrobacterium, Acetobacter, 
Achromobacter, Arthrobacter, Azoarcus, Azospirillum, Azotobacter, Bacillus, 
Burkholderia, Erwinia, Flavobacterium, Frankia, Herbaspirillum, Klebsiella, 
Kluyvera, Paenibacillus, Phyllobacterium, Pseudomonas, Proteus, Serratia, 
Rahnella, and Rhizobium (Babalola 2010; Ahemad and Kibret 2014; Chatterjee 
et al. 2017; Shukla 2019).

É. Abod et al.
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The current agricultural practice due to intensive use of agrochemicals faces 
difficulties due to the pollution and nonrenewable resource use, having a significant 
effect on the state of the environment. The solution relies on a more resource-
preserving and environmentally friendly practice so-called sustainable agriculture. 
In sustainable agricultural practice, the maintenance of soil health and its microbial 
community is crucial. Microbial products contribute to the plant nutrient status 
without pollution and depletion of natural resources and also protect plant under 
stress conditions (Bhattacharyya et al. 2016; Prasad et al. 2019). These microbes 
with plant nutrition enhancement, phytostimulation, or biocontrol effect can 
replace or complete the chemicals used in agriculture. Microbial inoculants are 
getting focus and are widely accepted in sustainable development of agriculture 
(Bhattacharyya et al. 2016; Prasad et al. 2019).

PGP bacteria from different ecological habitats, regions, and plant rhizosphere 
were described for their beneficial activities and impact on plant growth in order to 
be used in sustainable agriculture. Crop and wild plants and their rhizosphere repre-
sent a potential origin of new PGP bacterial strains. The wild plant rhizosphere, due 
to the harsh environment, is considered as a good source for competitive PGP bac-
teria (Gopalakrishnan et al. 2015). Nevertheless, a high percentage of studied PGP 
bacteria were isolated from crop plants as soybean (Sugiyama et  al. 2014), pea 
(Meena et al. 2015), wheat (Majeed et al. 2015), and maize (Shahzad et al. 2013; 
Qaisrani et al. 2014). Data on PGP bacteria isolated from wild plants are deficient; 
several findings were published regarding the native plant-associated rhizobacteria 
from Saudi Arabia (El-Sayed et  al. 2014) and India (Singh et  al. 2015). It was 
observed also that the performance of the PGPB varies due to environmental factors 
and local conditions (Shukla 2019). The aim of the research was to isolate PGP 
bacteria from wild and crop plants adapted to local conditions in order to be used in 
microbial inoculants in this region.

This chapter presents a comparative study of plant growth-stimulating aspects 
(production of siderophores, protease, and phosphatase and degradation of cellu-
lose, phytin, and lecithin) of bacterial strains originated from natural and agricul-
tural ecosystems. Furthermore, the plant growth-promoting potential of the strains 
used either single or in consortia was assessed in vivo on wheat growth.

The present study identified novel PGP characters for Achromobacter spanius, 
Acinetobacter lwoffii, Delftia lacustris, Pseudomonas jessenii, and P. protegens 
strains. D. lacustris BI5, P. jessenii BI7, and A. lwoffii BI13 bacterial strains were 
found to be efficient on wheat plant growth based on a single and multistrain micro-
bial formulation, making them good candidates to be used as microbial inoculants.

1.2	 �Strain Identification and Characterization

These efficient bacterial isolates were isolated from soil and rhizosphere of Carex 
sp. from Borsáros raised bog natural reserve (Harghita County, Romania, GPS coor-
dinates: 46°18′37.6″ N, 25°50′24.8″ E) and from soil and rhizosphere of Zea mays 
from Cristuru Secuiesc (Romania, GPS coordinates: 46°28′62.4″ N, 25°03′85.3″ E). 

1  Plant Growth-Promoting Bacteria: Strategies to Improve Wheat Growth…
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Among 13 isolates studied, 7 (53.8%) were sequestered from natural raised bog 
environment, whereas the remaining 6 (46.2%) from agricultural environment.

The 13 bacterial isolates were identified by their 16S rRNA gene sequence. 
Genomic DNA was isolated from strains after cultivation of cells on King’s B agar 
for 24 h. The 16S rRNA gene sequence was amplified by PCR using primers 27f 
(5′-AGAGTTTGATCMTGGCTCAG-3′) and 1401r (5′-CGGTGTGTACA 
AGGCCCGGGAACG-3′) and purified by PCR-MTM Clean-Up System (Viogene, 
Sunnyvale, USA). The partial 16S rRNA gene sequence was obtained by sequenc-
ing the gene in both directions (AmpliTaq® FS Big Dye TM Terminator sequencing 
kit, Applied Biosystems). The bacterial isolates were identified using partial 16S 
rDNA gene sequence alignment to database (Table 1.1) as follows: Achromobacter 
spanius BI1 and BI4; Delftia lacustris BI2, BI5, and BI6; Pseudomonas protegens 
BI3; P. jessenii BI7; and Acinetobacter lwoffii BI8, BI9, BI10, BI11, BI12, and BI13 
strains.

The strains isolated from the natural raised bog environment showed higher taxo-
nomic diversity, being identified to belong to three different genera (Achromobacter, 
Delftia, and Pseudomonas), whereas from the agricultural area, Acinetobacter sp. 
strains were isolated. The capacity to grow at different temperatures (4, 24, 25, 26, 
28, 32, and 37 °C), various salinities (0, 1, 2, 3, 4, 5, 6, 8, 10, and 12 g L−1 NaCl), 
and pH (pH 6, 6.5, 7, 7.5, and 8) was tested in flasks containing 20 mL tryptic soy 
broth (TSB) incubated at 28 °C (4–37 °C for temperature preference analysis) on 
150 RPM. Cellular morphology and cell diameter of the strains were determined 
from overnight culture using optical microscopy (Olympus, BX53). The morpho-
logical, physiological, and biochemical profile of the isolated strains was realized. 
The Achromobacter spanius BI1 and BI4; the Delftia lacustris BI2, BI5, and BI6; 
and the Pseudomonas protegens BI3 (Table  1.1) bacterial strains were Gram-
negative, nonspore-forming, short rods with 2.2 ± 0.5 μm length. Growth occurred 
between 4 and 37 °C with an optimum growth at 25 °C, salinity from 0 to 12 g L−1 
NaCl with an optimum between 4 and 6 g L−1, and pH values from 6 to 8 with an 
optimum between pH 7.0 and 7.5. The abovementioned bacterial strains proved to 
be aerobe and oxidase positive and were able to degrade glucose. Achromobacter 
spanius sp. nov., originated from medical samples, was first reported by Coenye 
et al. (2003) as Gram-negative, oxidase-positive bacteria, with optimal growth tem-
perature range between 28 and 37 °C and salinity between 0 and 4.5 g L−1 NaCl. 
Delftia lacustris sp. nov. was first isolated from freshwater environment by Jorgensen 
et al. (2009). It was described as rod-shaped bacteria, with the same optimal growth 
as in the current study (25 °C); the growth to 12 g L−1 NaCl salinity was supported 
by the strains isolated from raised bog environment (BI2, BI5, and BI6), whereas in 
case of the first described strain, growth to 6  g  L−1 NaCl salinity was observed 
(Jorgensen et al. 2009). Similar morphological and biochemical characteristics were 
observed in case of Pseudomonas protegens sp. nov. isolated from tobacco roots 
(Ramette et al. 2011) and Pseudomonas protegens BI3 strain isolated from raised 
bog environment. The isolate Pseudomonas jessenii BI7 was proved to be Gram-
negative, nonspore-forming, oxidase-positive aerobic bacteria, and it was first iso-
lated and described showing similar growth parameters and biochemical 
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characteristics from mineral water by Verhille et  al. (1999). The six studied 
Acinetobacter lwoffii strains isolated from agricultural area (BI8, BI9, BI10, BI11, 
BI12, and BI13) were Gram-negative, nonspore-forming, short rods with 
1.73 ± 0.45 μm length. Growth occurred between 3 and 37 °C with an optimum 
growth at 32 °C, salinity from 0 to 12 g L−1 NaCl with an optimum between 10 and 
12 g L−1, and pH values from 6 to 8 with an optimum at pH 7.5–8.0. The Acinetobacter 
strains were aerobe and oxidase negative and were able to degrade glucose. 
Acinetobacter lwoffii sp. nov. was first described by Bouvet and Grimont (1986) as 
rods with similar characteristics, differences in growth on various temperature were 
observed among strains, and those isolated in the present study were able to grow 
on lower temperature ranges (3–15 °C).

1.3	 �Siderophore Production

Siderophores are low molecular weight organic compounds produced by bacteria 
and fungi to enhance the iron uptake and are believed an efficient iron source also 
for the plants, therefore promoting plant growth (Saha et al. 2016). For siderophore 
production screening chrome azurol S (CAS) plates were used (Oldal et al. 2002). 
The plates were point inoculated and incubated for 24 h at 28 °C.

Eleven strains from the studied 13 (~85%) were able to produce siderophore, a 
high-affinity iron-chelating compound. Two strains, A. spanius BI4 isolated from 
raised bog environment and A. lwoffii BI13 isolated from agricultural environment, 
showed no siderophore production ability (Table 1.1). Although Achromobacter sp. 
strains are widely described as potential human pathogens, they were isolated also 
from rhizosphere environment, and PGP characteristics such as phosphate solubili-
zation, plant hormone production ability, acetylene reduction, and direct plant 
growth promotion have been recently described (Gopal 2013; Abdel-Rahman et al. 
2017). The study is the first record of siderophore production ability of an A. span-
ius BI1 strain. Morel et al. (2011) report Delftia sp. strains as having siderophore 
and indole acetic acid (IAA) production capacity, but Delftia lacustris strains were 
not mentioned previously as siderophore producers. D. lacustris strains were previ-
ously reported as having biocontrol potential against fungal pathogens (Janahiraman 
et al. 2016). P. protegens strains were previously described as siderophore producers 
(Ruiz et al. 2015; Sexton et al. 2017). No data about the siderophore production 
potential of P. jessenii was found in the literature; it was reported as capable of 
phosphate solubilization (Valverde et  al. 2007). Acinetobacter sp. strains were 
described by Trotel-Aziz et  al. (2008) as biocontrol agents and by Farokh et  al. 
(2011) showing PGP characteristics as siderophore and P-solubilization.

As the result of the screening for PGP potential according to our best knowledge, 
this is first recorded for siderophore-producing ability of A. spanius, D. lacustris, 
and P. jessenii.

1  Plant Growth-Promoting Bacteria: Strategies to Improve Wheat Growth…
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1.4	 �Organic Compound (Cellulose, Phytic Acid, 
and Lecithin) Degradation

The cellulose degradation potential of the isolated bacterial strains was exploited on 
carboxymethylcellulose (2% CMC, minimal salt media) containing agar plates 
using clearing assay. Bacterial strains were point inoculated on agar plates in tripli-
cate and incubated for 5 days at 28 °C. To visualize the producing halos around the 
bacterial culture, plates were stained with 0.1% Congo red dye. The cellulose deg-
radation ability was recorded if a clear zone around the colonies was observed. Five 
strains (71.4%, A. spanius BI1; D. lacustris BI2, BI5, and BI6; and P. jessenii BI7) 
isolated from natural raised bog environment and one strain (16.66%, A. lwoffii BI8) 
isolated from agricultural environment (Table 1.1) were able to degrade CMC.

Screening methods were used in order to elucidate the organic phosphorus-
degrading capacity of the strains. The analysis of the phytic acid utilization was 
conducted on Sperber agar (Sarikhani et al. 2010), while the lecithin degradation 
was performed on egg yolk agar (Lü et al. 2005). Each bacterial strain was point 
inoculated in triplicate on agar plates. After incubating at 28  °C for 5  days, the 
phytic acid or lecithin degradation was recorded for each strain that produced a 
clearing zone.

Lecithin degradation was observed only for two bacterial strains (15.3%): A. 
spanius BI1 and P. protegens BI3 isolated from the natural raised bog environment. 
The lecithinase activity of a P. protegens strain isolated from tobacco roots was 
previously described by Ramette et al. (2011). Phytic acid degradation was detected 
in four bacterial strains (30.76%): D. lacustris BI2, BI5, and BI6 and A. spanius 
BI4. The six studied A. lwoffii strains were unable to degrade any of the phosphorus-
containing organic compounds. In case of Achromobacter sp., Pseudomonas jes-
senii, and Acinetobacter sp., only inorganic phosphate solubilization was previously 
reported (Valverde et al. 2007; Farokh et al. 2011; Abdel-Rahman et al. 2017); no 
data on phosphorus-containing organic compound degradation were found in litera-
ture. We provide new evidence of organic matter decomposing activity of the two 
Achromobacter and one Acinetobacter strain. A. spanius BI1 strain was able to 
decompose lecithin and cellulose, and A. spanius BI4 utilized phytic acid, whereas 
in case of A. lwoffii BI8 strain, cellulose-degrading capacity was detected.

1.5	 �Alkaline Protease and Phosphatase Enzyme Assays

The bacterial strains were grown in culture broth containing casein as substrate 
(Adinarayana et al. 2005). After incubation on a rotary shaker (28 °C, 140 RPM) for 
24 h, the culture media was centrifuged at 10000 RPM for 10 min, and the superna-
tants were gathered for enzyme assay. The absorbance of the resulted tyrosine was 
determined using a microplate reader (Fluostar Optima, BMG Labtech), and from 
the absorbance values, the protease enzyme activities (mol tyrosine/mL/h) of the 
strains were determined. The alkaline protease enzyme activity was proved for six 
(D. lacustris BI2, BI5, BI6, A. spanius BI4, P. jessenii BI7, A. lwoffii BI9) bacterial 
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strains (Table 1.1). The protease enzyme activities ranged from 0.04 ± 0.02 mol 
tyrosine/mL/h to 0.33 ± 0.01 mol tyrosine/mL/h.

In most studies published in the last years, the protease activity of the PGP bacte-
rial strains was detected on skim milk agar (Hantsis-Zacharov and Halpern 2007; 
Suresh et  al. 2010; Yuttavanichakul et  al. 2012; Sadeghi et  al. 2014; Masciarelli 
et al. 2014). Quantitative determinations of the protease enzyme activities were per-
formed for several PGP bacterial strains as follows: Bacillus subtilis 333 (0.162 mmol 
tyrosine/h), Tatumella ptyseos (0.162  mmol tyrosine/h), B. megaterium 817 
(0.157 mmol tyrosine/h), Acinetobacter sp. 378 (0.065–0.126 mmol tyrosine/h on 
different pH values) (Rodarte et al. 2011), P. putida MSC1 (0.0057 mol tyrosine/h), 
P. pseudoalcaligenes MSC4 (0.012 mol tyrosine/h) (Saraf et al. 2013), and B. cereus 
PM2 strain (0.0029 mmol tyrosine/h) (Anwar et al. 2014). No previous evidence for 
the alkaline protease activity of the studied taxa, Delftia lacustris, Achromobacter 
spanius, Pseudomonas jessenii, and Acinetobacter lwoffii, was found in the scien-
tific literature. Alkaline protease activity of strains affiliated to Acinetobacter sp. 
genera was determined by Rodarte et al. (2011).

Phosphatase activity was tested by using a chromogenic substrate p-nitrophenyl 
phosphate (pNPP) (Wu et  al. 2007). The bacterial strains were grown in pNPP-
containing broth in an incubator shaker (24 h, 28 °C, and 140 RPM). Cells were 
lysed by sonication, and the debris was separated by centrifugation at 10000 RPM 
for 10 min at 25 °C. The absorbance of the resulted p-nitrophenol was quantified 
using microplate reader (Fluostar Optima, BMG Labtech), and from the absorbance 
values, the phosphatase enzyme activities (μmol p-NP/mL/h) of the strains were 
determined. In case of eight bacterial strains (D. lacustris BI2 and BI5, P. protegens 
BI3, A. spanius BI4, A. lwoffii BI10, BI11, BI12, and BI13), the alkaline phospha-
tase enzyme activity was determined, varying between 0.12  ±  0.03 and 
1.83 ± 0.05 μmol p-NP/mL/h. The values obtained for the PGP bacteria and pre-
sented here are higher than those reported previously. Alkaline phosphatase enzyme 
activity varied between 1.41 and 2.15 μmol p-NP/mL/h in case of four bacterial 
strains (Bacillus brevis 2W4W1, B. polymyxa 1W5W5, B. thuringiensis 2P1M3, 
Xanthomonas maltophilia R85) isolated from wheat and pea plants (De Freitas et al. 
1997). Viruel et al. (2011) determined values between 0.24 and 4.92 μmol p-NP/mg 
protein/h enzyme activities in soil with small Pi values for four bacterial strains 
(Serratia marcescens EV1, Pantoea eucalypti EV4, Pseudomonas tolaasii IEXb, 
Enterobacter aerogenes IEY). Rana et al. (2012) investigated the effects of PGP 
bacterial strains on wheat plants and observed in case of inoculation with two bacte-
rial consortia (Bacillus sp. AW1 and Brevundimonas sp. AW7 consortia, Providencia 
sp. AW5 and Brevundimonas sp. AW7 consortia, respectively) 1.4–1.94  μmol 
p-NP/g soil/h alkaline phosphatase enzyme activities in soil. Kang et  al. (2013) 
determined 0.022 and 0.13 μmol p-NP/g soil/h alkaline phosphatase enzyme activi-
ties from soil inoculated with Bacillus pumilus WP8 and Pseudomonas chlorora-
phis RA6 bacterial strains.

This study confirms the alkaline phosphatase activity of Delftia lacustris, 
Achromobacter spanius, Pseudomonas protegens, and Acinetobacter lwoffii. Acid 
and alkaline phosphatase activity of Delftia lacustris strain when first described was 
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also mentioned by Jorgensen et al. (2009), but no activity was measured. According 
to our best knowledge, we provide new evidence of alkaline protease activity for A. 
spanius, P. jessenii, D. lacustris, and A. lwoffii and alkaline phosphatase activity for 
A. spanius, P. protegens, D. lacustris, and A. lwoffii strains. In case of two D. lacus-
tris strains (BI1, BI5) and one A. spanius BI4 strain, both alkaline phosphatase and 
protease activity was observed.

1.6	 �Growth-Promoting Effect of Bacterial Treatment 
on Wheat

Seeds of the same weight (0.3–0.4 g) of Triticum aestivum (wheat) were surface 
sterilized and germinated on filter paper for 48 h. The seedlings (1.5–2 cm shoot 
length) were transferred into autoclavable polypropylene boxes (size 
34 × 23 × 16 cm) with lid. In these boxes steel sieves were made (25 × 15 cm, height 
2 cm), with 4-mm-diameter holes, and the distance between the holes were 20 mm. 
The boxes with the sieves were sterilized by autoclaving at 121 °C, 15 min. Seedlings 
were wrapped in sterile buds and were placed 4 cm from each other (20–30 seed-
lings/box). For plant growth a nutrient solution was used containing the minimum 
necessary elements as follows: macroelements, 1.85 g L−1 MgSO4‧7H2O, 1.66 g L−1 
CaCl2‧2H2O, 5 g L−1 peptone, and 2.5 g L−1 phytic acid sodium salt as organic nitro-
gen and phosphorus source, and microelements, 0.44  mg  mL−1 MnSO4‧4H2O, 
0.16 mg mL−1 H3BO3, 0.15 mg mL−1 ZnSO4‧7H2O, 0.08 mg mL−1 KI Fe-EDTA, 
3.73 mg mL−1 Na2EDTA, and 2.78 mg mL−1 FeSO4‧7H2O.

Bacterial cultures were grown for 24 h in a rotary shaker (150 RPM) in 100 mL 
flasks filled with 25 mL TSB broth. Following the seedling transplant, each was 
inoculated with 1 ml bacterial inoculum (108 CFU mL−1) of the selected bacterial 
strains or bacterial consortium. Plants were placed in an environmental growth 
chamber (Sanyo MLR-351) at 25 °C, 70% relative humidity using a lighting pro-
gram of 12 h/day with 2500 lx. After 11 days of growth, plants were harvested, and 
the shoot and root length and wet and dry biomass were determined. The tests were 
carried out in 8–15 replicates for each plant. Data obtained were compared to unin-
oculated control, using PAST statistical program.

The treatment of wheat plants with three selected isolates resulted different 
effects on dry and wet biomass production. Table 1.2 presents the results of the 
bacterial inoculation experiment on plant growth and biomass under gnotobiotic 
conditions. Bacterial isolates D. lacustris BI5 and P. jessenii BI7 significantly 
increased the shoot length of plants compared to the uninoculated plants; the rela-
tive increase was of 33.05% (11.43  ±  1.32  cm) and 25.27% (10.76  ±  1.4  cm), 
respectively. The inoculation with A. lwoffii BI13 strain showed no significant effect 
on the shoot length of wheat plants. However, A. lwoffii BI13 strain used in consor-
tia with P. jessenii BI7 strain showed a higher increase on wheat shoot length 
(43.48%) than the P. jessenii BI7 strain alone (Fig. 1.1a). Regarding the total weight 
of the plants, the inoculation with D. lacustris BI5 slightly stimulated (9.37%), 
whereas P. jessenii BI7 strain had no influence on the plant growth (Fig.  1.1b). 

É. Abod et al.



www.manaraa.com

11

Regarding the total weight, the result of inoculation showed similar effect as for the 
shoot length; the inoculation with A. lwoffii BI13 used in consortia with P. jessenii 
BI7 showed an increase of 8.85% compared to the control.

Only the P. jessenii BI7 and A. lwoffii BI13 bacterial consortia showed beneficial 
effect on wet weight of the shoot (increase of 15.78%). No significant differences 
between the inoculated and uninoculated control plants wet and dry root biomass 
were observed (Fig. 1.1c, d). The shoot dry weight was significantly increased in 
plants inoculated with D. lacustris BI5 (0.010 ± 0.001 g, 25.98%), P. jessenii BI7 
(0.010  ±  0.001  g, 25.98%), and P. jessenii BI7 + A. lwoffii BI13 consortia 
(0.009 ± 0.001, 11.96%) (Table 1.2, Fig. 1.1f).

The treatment of wheat plants with the bacterial strains had significant effect 
mostly on shoot growth: the D. lacustris BI5, the P. jessenii BI7, and the P. jessenii 
BI7 + A. lwoffii BI13 bacterial consortia showed growth promotion on shoot length 
and shoot dry weight. The P. jessenii BI7 + A. lwoffii BI13 bacterial consortia had 
also significant beneficial effect on shoot wet weight. In this research work, the co-
inoculation of P. jessenii BI7 strain isolated from raised bog environment with A. 
lwoffii BI13 strain isolated from agricultural environment was found to be more 
efficient on wheat growth than single treatment with either strain.

Bacillus sp., Azospirillum sp., B. megaterium, Paenibacillus polymyxa, and 
Raoultella terrigena bacterial strains isolated from the wheat rhizosphere exhibited 
stimulatory effects on grain yields (Khalid et  al. 2004) and notable increase in 
uptake of nutrients of grain, leaf, and straw part of the plants (Turan et al. 2010). 
Wheat plants showed better growth and higher biomass when inoculated with 
Azospirillum brasilense, Bacillus subtilis, and Arthrobacter sp. in pot experiments 
and also on field (de Souza et al. 2015). It was observed that certain co-inoculations 
caused synergy due to improvement of the performance of one bacterial strain by 
another, so-called helper bacteria (Gopalakrishnan et al. 2015). Bacteria belonging 
to Azospirillum sp., Azotobacter sp., Bacillus sp., Pseudomonas sp., Serratia sp., 
and Enterobacter genera were found successfully co-inoculated with Rhizobium sp. 
(Gopalakrishnan et al. 2015). Triple combinations of PGP rhizobacteria based on 

Table 1.2  Influence of the bacterial treatments on wheat growth

Bacterial strains
D. lacustris 
BI5 P. jessenii BI7

A. lwoffii 
BI13

P. jessenii BI7 + A. 
lwoffii BI13

Total weight (g) 0.084 ± 0.012* 0.080 ± 0.01 0.068 ± 0.01 0.083 ± 0.009*
Shoot length 
(cm)

11.43 ± 1.32* 10.76 ± 1.40* 8.44 ± 1.81 12.32 ± 1.02*

Wet weight of 
the shoot (g)

0.058 ± 0.01 0.058 ± 0.01 0.046 ± 0.011 0.0616 ± 0.0068*

Dry weight of 
the shoot (g)

0.010 ± 0.001* 0.010 ± 0.001* 0.007 ± 0.001 0.009 ± 0.001*

Wet weight of 
the root (g)

0.021 ± 0.007 0.017 ± 0.006 0.018 ± 0.005 0.018 ± 0.006

Dry weight of 
the root (g)

0.004 ± 0.001 0.002 ± 0.000 0.003 ± 0.001 0.004 ± 0.001

*Significantly different from the control for p < 0.05
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Bacillus sp., Stenotrophomonas sp., and Acetobacter sp. (Kumar et al. 2014) and 
Serratia sp., Microbacterium sp., and Enterobacter sp. strains (Kumar et al. 2017a) 
promoted plant growth and yield of wheat plant under pot and field experiment. 
Bacillus subtilis and Arthrobacter sp. efficiency was higher under co-inoculation 
conditions (de Souza et al. 2015). A commercial biofertilizer based on a consortium 
of Azospirillum sp., Azoarcus sp., and Azorhizobium sp. proved to be effective on 
wheat growth and grain yield (Dal Cortivo et al. 2017). It was previously mentioned 
that Pseudomonas jessenii was more efficient regarding to plant growth of chickpea 

Fig. 1.1  The influence of plant growth-promoting bacteria D. lacustris BI5, P. jessenii BI7, A. 
lacustris BI13, and P. jessenii BI7 + A. lacustris BI13 bacterial consortia on wheat plants: (a) shoot 
length (cm); (b) total weight (g); (c) wet weight of the root (g); (d) dry weight of the root (g); (e) 
wet weight of the shoot (g); (f) dry weight of the shoot (g)

É. Abod et al.
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in co-inoculation (Valverde et  al. 2007). The study is the first report on wheat 
growth-promoting Delftia lacustris, Pseudomonas jessenii, and Acinetobacter lwof-
fii strains used either alone or as co-inoculants.

1.7	 �Conclusion and Future Perspectives

The use of microbial inoculants in agricultural practice is an ecologically advanta-
geous technique that is effective not only for crop production but also maintains soil 
fertility. The local environmental factors (temperature, humidity, edaphic aspects) 
have influence on the microbial processes and accordingly the effectiveness of the 
agriculturally important strains. Therefore it is important to carry out studies in 
order to isolate and select locally adapted, suitable bacterial strains for agricultural 
sustainability.

This study shows that there is a high potential in rhizosphere bacteria as plant 
growth promoters being original either from natural or from agricultural ecosystem. 
A number of 13 PGP bacterial strains isolated from natural raised bog and agricul-
tural environment, belonging to Achromobacter, Delftia, Pseudomonas, and 
Acinetobacter genera, were characterized based on morphology, physiology, bio-
chemical profiles, and their PGP potential. The most efficient bacterial strains (D. 
lacustris BI5, P. jessenii BI7, A. lwoffii BI13) were selected and tested on wheat 
plant growth. The bacterial strains alone either in consortia showed significant 
increase on wheat shoot growth. Higher efficiency in case of co-inoculation for 
P. jessenii and A. lwoffii was observed compared to single inoculation and control. 
The synergy was observed between a bacterial strain originated from a natural 
raised bog environment and another from an agricultural area. Due to the novel 
plant growth-promoting characters, observed in synergy between strains, we con-
sider the abovementioned bacterial strains promising for sustainable agriculture.

Despite the evidence on the effectiveness of PGPB in crop production, their use 
in agricultural practice needs to be encouraged. Future research is needed for new 
and more efficient formulations of microbial inoculants even using a multidisci-
plinary approach.
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Abstract
Soil consists of diverse microscopic life forms such as actinomycetes, algae, 
bacteria, fungi, nematodes, and protozoans. But, the rhizospheric region is the 
most widely colonized regions of the soil due to the secretion of various nutrients 
by plant roots which attract microbes toward it with bacteria being the dominant 
one in this region. The bacteria in the rhizospheric region are highly beneficial 
for the plants as they directly or indirectly stimulate growth of the plants by 
nitrogen fixation; production of various phytohormones including auxins, cyto-
kinins, and gibberellins; solubilization of phosphorus; production of 1-aminocyc
lopropane-1-carboxylate deaminase (ACC), siderophores, HCN, ammonia, and 
various lytic enzymes; and induction of systemic resistance. These plant growth-
promoting bacteria of rhizospheric region are referred to as plant growth-
promoting rhizobacteria (PGPR). The phyla involving major groups of PGPR 
include Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria belong-
ing to different genera Acetobacter, Achromobacter, Arthrobacter, Azospirillum, 
Azotobacter, Bacillus, Burkholderia, Exiguobacterium, Flavobacterium, 
Gluconacetobacter, Herbaspirillum, Methylobacterium, Paenibacillus, 
Pseudomonas, Rhizobium, Serratia, and Staphylococcus. Furthermore, the use 
of PGPR offers an eco-friendly and an attractive way of replacing the chemical 
fertilizers, pesticides. In fact, there are many reports on use of rhizobacteria for 
improving the productivity and also protection of plants against pathogens and 
pests. In this way, benefits of using PGPR for sustainable agriculture is gaining a 
greater attention as well as acceptance worldwide, and the progress that has been 
made to date in using the rhizospheric bacteria with various applications, for 
agricultural improvement with reference to plant growth-promoting mecha-
nisms, has been summarized and discussed in the present chapter.

Keywords
Abiotic stress · Biodiversity · PGPR · Plant growth promotion · Sustainable 
agriculture
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2.1	 �Introduction

In the last 10,000 years, human population has increased geometrically ten times 
from less than ten billion to more than six billion to ten billion soon. Most of the 
caloric intake making that possible has come from three major crops which include 
wheat, maize, and rice. Approximately 50% of the human calories are provided by 
wheat along with maize as well as rice being also a critical food source in the regions 
which have a rapid population growth including Asia, Africa, and the Middle East. 
But, the gap between the current global yields of wheat and maize and that achiev-
able through best management practices is large. It is expected that this gap can be 
reduced by the manipulation of various soil processes especially focusing on those 
which involve microbial ecology. Developing a predictive understanding between 
soil biology, agronomy, and crop performance would be the first step so as to 
improve the yields of the intensive cereals, and it would have a great impact on the 
global food production.

Globally, the expectations are high that the productivity of the crops could be 
increased by manipulations of the soil biology through crop management and genet-
ics (Morrissey et al. 2004; Welbaum et al. 2004). One of the worthwhile ways is to 
look into the rhizospheric region of the soil and exploring those microbes which are 
residing in rhizospheric region in close proximity of plants and is a justified move 
so as to attain this target. Rhizosphere is defined as the narrow zone of the soil sur-
rounding the roots. It is known to be one of the largest ecosystems on earth with 
high energy flux with bacteria being dominant in this region.

The associations of rhizobacteria with the roots of the legumes for the fixation of 
the nitrogen, crop species rotation for pathogen control, as well as mycorrhizal 
associations are obvious examples that clearly had productivity benefits. The inter-
actions of rhizobacteria with the plants are dynamic and intricate. Rhizobacteria 
play different roles; some of them makes the availability of the nutrients to the 
plants, thereby maintaining the health of the plants such as phosphorus solubilizers 
which includes Rhizobium sp., Pseudomonas sp., Micrococcus sp., Flavobacterium 
sp., Erwinia sp., Chryseobacterium sp., Burkholderia sp., Bacillus sp., 
Agrobacterium sp., Aerobacter sp., and Achromobacter sp. Some play a vital role in 
stimulating the plant growth by producing various phytohormones including IAA, 
cytokinins, and gibberellins or by suppressing pathogens, thereby acting as biocon-
trol agents. Pseudomonas sp. has been reported to be dominant among PGPR which 
act as the biocontrol agent against different phytopathogenic fungal species includ-
ing Rhizoctonia, Fusarium, Sclerotinia, Pythium, Erwinia, and Macrophomina 
(Defago et al. 1990; Garbeva et al. 2004; Gupta et al. 2001; Validov et al. 2005; 
Yadav and Yadav 2018a).

Further, various strains of Bacillus amyloliquefaciens, Bacillus cereus, Bacillus 
mycoides, Bacillus pasteurii, Bacillus pumilus, Bacillus sphaericus, and Bacillus 
subtilis have been known to be elicitors of induced systemic resistance (ISR), 
thereby reducing the incidence or severity of various diseases on diverse hosts 
(Kloepper et al. 2004). Using PGPR as biostimulant or bioprotectant is a potent as 
well as eco-friendly strategy to protect the crops from damage by pathogens as well 
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as for enhancing the yield and productivity. Even, the application of PGPR in 
diverse crops has been reported in different studies to approximately increase the 
yield by 20–40% all over the world (Aeron et al. 2011).

The knowledge about the populations of bacteria which are associated with the 
roots comes either from the plants that are grown in the pots or simple laboratory 
conditions. The stimulation of the growth by PGPR is well demonstrated in a num-
ber of the cereals, pulses, vegetables, various plantation crops, and even some trees. 
PGPR are known to enhance the germination percentage, seedling vigor, biomass of 
the plants, and ultimately the productivity. Majority of PGPR belongs to genera 
Achromobacter, Acinetobacter, Alcaligenes, Arthrobacter, Azospirillum, Bacillus, 
Burkholderia, Chitinophaga, Delftia, Dyella, Enterobacter, Erwinia, 
Exiguobacterium, Flavobacterium, Klebsiella, Methylobacterium, Micrococcus, 
Pseudomonas, Paenibacillus, Pseudomonas, Rhodobacter, Salmonella, Serratia, 
Sphingobium, and Staphylococcus (Chaiharn and Lumyong 2011; Lavania et  al. 
2006; Verma et al. 2016a, 2016b). PGPR have been formulated, produced, and mar-
keted to be used as bio-inoculant and applied successfully to a wide range of agro-
economically important plants including leguminous and non-leguminous crops.

This chapter provides an overview of rhizospheric diversity of bacteria associ-
ated with diverse crops and an important role they play in the rhizospheric region 
with particular reference to the various direct as well as indirect mechanisms used 
by PGPR for improving the growth of the plants and suppression of the diseases. 
Further, the chapter also focuses on the applications of PGPR for alleviation of dif-
ferent abiotic stresses.

2.2	 �Isolation and Characterization of Rhizospheric Bacteria

Microbial diversity has been widely studied by diverse techniques. A number of 
culture media have been designed for cultivating and isolating diverse groups of 
microbes. Besides, the traditional methods and molecular techniques such as poly-
merase chain reaction (PCR) or real-time polymerase chain reaction (RT-PCR), 
which target specific DNA or RNA, are helping in better way to study the microbial 
diversity. The PCR products can be used in preparation of the clone libraries which 
are very helpful in identification and characterization of dominant bacterial genera 
in the soil or can be used for fingerprinting techniques. Furthermore, amplified 
rDNA restriction analysis (ARDRA), density gradient gel electrophoresis or tem-
perature gradient gel electrophoresis, and ribosomal intergenic spacer length poly-
morphism (RISA) (Ranjard and Richaume 2001) are some of other techniques to 
study microbial diversity. For identification of microbes, genomic DNA can be iso-
lated using Zymo Research Fungal/Bacterial DNA MicroPrep™ following the stan-
dard protocol prescribed by the manufacturer. Different primers can be used for 
amplification of 16S rRNA gene for archaea and bacteria while 18S rRNA gene for 
fungi. PCR amplified 16S/18S rRNA genes have to be purified and sequenced. The 
partial 16S or 18S rRNA gene sequences should be compared with sequences avail-
able in the NCBI database. The phylogenetic tree can be constructed on aligned data 
sets using the neighbor-joining (NJ) method and the program MEGA 4.0.2.
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To know the plant growth-promoting capability and other agricultural and 
biotechnological applications of plant growth promoting microbes, standard meth-
ods could be used for screening for PGP attributes including the production of plant 
growth regulators including indole-3-acetic acid (Bric et al. 1991), gibberellic acid 
(Brown and Burlingham 1968), and 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase (Jacobson et al. 1994); solubilization of phosphorus (Pikovskaya 1948), 
potassium (Hu et al. 2006), and zinc (Fasim et al. 2002); production of ammonia 
(Cappucino and Sherman 1992), HCN (Bakker and Schippers 1987), and 
Fe-chelating compounds (Schwyn and Neilands 1987); hydrolytic enzymes produc-
tion (Yadav et  al. 2016a); and biocontrol against different microbial pathogens 
(Sijam and Dikin 2005) as well as for the production of secondary metabolites.

2.3	 �Diversity and Distribution of Microbes Associated 
with Different Crops

Recently, the rhizobacteria and their association with the crops and their prolifera-
tion of the rhizosphere are proving to very effective for most of the cereals. Some 
rhizobacteria possess capability to improve plant growth or influence root health by 
solubilizing phosphorus, producing phytohormones, or acting as biological control 
agents, while some are symbiotic plant colonizers which fix the atmospheric nitro-
gen though some free-living have also been known for nitrogen fixation. The inter-
action and diversity of PGPR with different crops certainly depend on environmental 
conditions. The diverse groups of microbes that have been reported from rhizo-
spheric microbiomes include phyla Actinobacteria, Bacteroidetes, Firmicutes, and 
Proteobacteria (Fig. 2.1). Overall the distribution of microbes varied in all bacterial 
phyla; Proteobacteria has been most dominant followed by Firmicutes. The least 
number of microbes was reported from phyla Bacteroidetes and Actinobacteria 
(Fig.  2.2). On review on different research on diversity of rhizospheric microbi-
omes, it can be concluded that Pseudomonas was the most dominant genus fol-
lowed by Bacillus, Pantoea, Methylobacterium, Azotobacter, Paenibacillus, 
Enterobacter, Azospirillum, Staphylococcus, Sphingobium, Serratia, Rhizobium, 
Klebsiella, Flavobacterium, Exiguobacterium, Rhodobacter, Herbaspirillum, 
Gluconacetobacter, Erwinia, Burkholderia, Azomonas, Arthrobacter, 
Ochrobactrum, Kocuria, Dyella, Duganella, Dietzia, Delftia, Cronobacter, and 
Xanthomonas (Fig. 2.2).

On review of different crops chickpea, maize, rice, soybean, sugarcane and 
wheat, it was found that rhizospheric microbes were most predominant and 
microbes  belonged to different phylum. Along with common and predominant 
microbes, many host-specific rhizospheric microbes have been reported, i.e., 
Duganella, Planococcus, Planomicrobium, Rhodobacter, Salmonella, Sporosarcina, 
and Achromobacter from wheat; Arenimonas, Beijerinckia, Bradyrhizobium, 
Chitinophaga, Dyella, Erwinia, Lysobacter, Massilia, Methylocella, Methylocystis, 
Myroides, Ohtaekwangia, Proteus, Ralstonia, Rhodovulum, and Variovorax from 
maize; Brevibacterium, Chryseobacterium, Ochrobactrum, and Phosphobacteria 
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Fig. 2.1  Phylogenetic tree showed the relationship among different groups of microbes isolated 
from diverse sources worldwide
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Fig. 2.1  (continued)
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Fig. 2.1  (continued)

from rice; Brevibacillus, Gluconacetobacter, Novosphingobium, and Pediococcus 
from sugarcane; Rahnella and Raoultella from soybean; and Brevundimonas and 
Corynebacterium from chickpea (Fig.  2.2c). There are many reports on niche-
specific microbiomes from different habitats, e.g., from cold habitats (Yadav et al. 
2017d), hot springs (Kumar et  al. 2014; Sahay et  al. 2017), saline (Yadav et  al. 
2015c), drought (Verma et al. 2014, 2016b), host-specific plant microbiomes (Verma 
et al. 2016a; Yadav and Yadav 2018b), and soil specific (Biswas et al. 2018)
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Fig. 2.2  (a–c) Abundance, diversity, and richness of microbiomes belonging to diverse phyla and 
genera isolated from diverse sources worldwide.
Wheat (Beneduzi et al. 2008; Joshi and Bhatt 2011; Majeed et al. 2015; Velazquez-Sepulveda 
et al. 2012; Verma et al. 2014, 2016a, 2016b); Maize (Baldani and Baldani 2005; Chauhan et al. 
2011; Da et al. 2008; García-Salamanca et al. 2013; Li et al. 2014; Pereira et al. 2011; Roesch et al. 
2008; Taiwo et al. 2017; Vardharajula et al. 2011); Rice (Arjun and Harikrishnan 2011; Bal et al. 
2013; Gandhi Pragash et al. 2009; Gopalakrishnan et al. 2011; Hingole and Pathak 2016; Joshi 
et al. 2011; Rameshkumar et al. 2014; Samuel and Muthukkaruppan 2011; Sarkar et al. 2018a; 
Shrivastava 2013; Tripathi et al. 2002); Sugarcane (Beneduzi et al. 2013; Lamizadeh et al. 2016; 
Pisa et  al. 2011; Rameshkumar et  al. 2014; Ratón et  al. 2012); Soybean (Jain et  al. 2016; 
Sibponkrung et al. 2017; Sugiyama et al. 2014; Wahyudi et al. 2011); Chickpea (Belimov et al. 
2001; Dubey et al. 2013; Kaur and Sharma 2013)

2.3.1	 �Wheat (Triticum aestivum)

Wheat is one of the most important crops grown around the world and one of the 
widely consumed crops by human population. Wheat is used to make a variety of 
foods including pasta, breakfast cereal, noodles, cakes, bread, etc. Recent 
research indicates that wheat is rich in antioxidants which are contained in the 
grain seeds that contribute to suppressing free radical damage and protect humans 
from chronic diseases such as cancer. The species of wheat can be classified into 
many different groups, such as hard, soft spring, or winter wheat, completely 
depending on seed quality, color, and pattern of growth. It is grown in about 100 
countries throughout the world. In India, the production of wheat is expected to 
increase by ~4% every year. It basically grows in the temperate climate and is a 
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Fig. 2.2  (continued)
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Fig. 2.2  (continued)
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staple food for about 35% of the human population. To meet the demand and to 
provide the food security to the growing population, greater agricultural produc-
tion is a pressing need in the twenty-first century. In the developing countries, to 
increase the productivity of the wheat, various chemicals are used for the elimi-
nation of the diseases caused by the different pathogens, but the use of chemicals 
causes damage to the environment as well as to the human health (He et al. 2005).

In this regard, rhizospheric microbial communities play an important role in lim-
iting or inhibiting the growth of the pathogens. Furthermore, studies also show that 
PGPR can reduce the use of the chemicals in the crops (Adesemoye et al. 2009). 
The microbial community in the root zone is dependent on certain factors such as 
the age of the plant, plant species, root type, soil type as well as the other selection 
pressures. A number of bacterial species belonging to genera Acinetobacter, 
Arthrobacter, Azospirillum, Bacillus, Burkholderia, Enterobacter, Erwinia, 
Flavobacterium, Methylobacterium, Pseudomonas, Rhizobium, and Serratia have 
been recovered from the rhizosphere of wheat (Rana et al. 2018; Verma et al. 2017b; 
Yadav et al. 2018b).

Germida and Siciliano (2001) analyzed the rhizospheric diversity of wheat by 
using fatty acid methyl esterified method and found Pseudomonas, Arthrobacter, 
Bacillus, Flavobacterium, Micrococcus, Xanthomonas, Agrobacterium, and 
Enterobacter to be the predominant genera. Beneduzi et al. (2008) studied genetic as 
well as phenotypic diversity of bacilli isolated from rhizospheric and bulk soil of 
wheat fields in Southern Brazil. In the study, 311 putative nitrogen-fixing bacilli were 
isolated, and strains belonging to numerous species were grouped into 40 different nif 
H-RFLP-PCR profiles. The genus Paenibacillus was found to be the most prominent 
group in both the rhizospheric soil (77.8%) and bulk soil (79%). In a study of Verma 
et al. (2014), rhizospheric bacteria associated with wheat from central zone of India 
belonged to genera, namely, Acinetobacter, Bacillus, Duganella, Exiguobacterium, 
Kocuria, Lysinibacillus, Micrococcus, Paenibacillus, Pantoea, Pseudomonas, 
Serratia, and Stenotrophomonas. In another study of Verma et al. (2016a), the molec-
ular diversity from rhizosphere of wheat from six agroecological zones of India was 
done in which bacterial communities including Bacillus endophyticus, Paenibacillus 
xylanexedens, Planococcus citreus, Planomicrobium okeanokoites, Sporosarcina sp., 
and Staphylococcus succinus were reported for the first time.

2.3.2	 �Maize (Zea mays)

Maize is one of the most important crops with great value to humanity. It is utilized 
in human diet in its both fresh and the processed forms and further also finds appli-
cations in the production of ethanol, industrial starches, and even oils. In Asia, Latin 
America, and Africa, maize is the only source of proteinaceous diet particularly in 
weaning of food for babies. The total production of the maize around the world 
ranges up to about 58  million tons with the main producer being Brazil, China, 
India, Mexico, and the United States.
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The rhizospheric microbial community of maize has been thoroughly investi-
gated (Aira et al. 2010; Castellanos et al. 2009; Chelius and Triplett 2001; Dohrmann 
et al. 2013). Different studies have been carried out which clearly reveal that there 
are specific microbial communities in association with the maize depending on the 
properties of the soil (Castellanos et al. 2009), genotypes, crop management such as 
the use of fertilizers (Aira et al. 2010), and stages of its growth (Cavaglieri et al. 
2009). The study of Gomes et  al. (2001) suggested that the Arthrobacter sp. 
decreases as the age of the plant increases. On the other hand, there are reports 
which suggest that the composition of the microbial community of maize is com-
pletely independent of the cultivar (Dohrmann et  al. 2013; Schmalenberger and 
Tebbe 2002), stage of growth (Gomes et al. 2002), and genotype (Schmalenberger 
and Tebbe 2002). It is suggested that such discrepancy in the microbial responses in 
the rhizosphere may be due to various reasons such as the differences in the plant 
species and soil types or it can also be due to the different methodologies used. 
Furthermore, some studies suggest that stage of plant may be another reason influ-
encing root physiology which in turn may affect the quality as well as the quantity 
of the root exudates ultimately exerting a selection on the rhizospheric microbial 
community (Dunfield and Germida 2003; Houlden et al. 2008), while some studies 
suggest that seasonal variations that affect activity as well as relative abundance of 
the bacterial communities in the rhizosphere are completely plant dependent 
(Dunfield and Germida 2003; Houlden et al. 2008; Mougel et al. 2006; Smalla et al. 
2001). Cavaglieri et  al. (2009) pointed out that microbial communities in maize 
plant show structural alteration over time in maize plant.

The taxonomic affiliation of the bacteria associated with maize reveals that there 
is a high dominance of Actinobacteria and Proteobacteria (Chelius and Triplett 
2001; Roesch et  al. 2008). Da et  al. (2008) studied the genetic diversity of the 
Paenibacillus polymyxa populations from the rhizosphere of four cultivars of maize. 
On the basis of biochemical tests, 67 isolates were identified as Paenibacillus poly­
myxa which were further analyzed for DNA polymorphism, and also the amplifica-
tion of repetitive DNA  by sequencing methods and result demonstrated that 54 
genotypic groups showed a high level of genetic polymorphism among strains of 
Paenibacillus polymyxa. Roesch et al. (2008) studied diversity of diazotrophic bac-
teria within rhizosphere soils, roots, and stems of field-grown maize. α-Proteobacteria 
and β-proteobacteria were most abundant in the rhizospheric soil and stem samples, 
and γ-proteobacteria dominated rhizospheric soil samples. The study revealed rhi-
zospheric soil samples to possess greater diversity of diazotrophic bacteria. 
Azospirillum and Azotobacter were found in almost all samples at an abundance. 
Beijerinckia sp., Delftia sp., Geobacter sp., Gluconacetobacter sp., Methylo­
bacterium sp., Methylocella sp., Methylocystis sp., and Rhodovulum sp. were mainly 
restricted to rhizospheric soil. Da et al. (2008) reported that the bacterial community 
associated with maize harbors multiple orders including Actinomycetales, 
Burkholderiales, Clostridiales, Rhizobiales, Rubrobacteriales, and Xantho­
monadales. The members of the genera Azospirillum, Herbaspirillum, and 
Burkholderia and other free-living bacteria are diazotrophs also associated with 
maize (Baldani and Baldani 2005; Roesch et al. 2008).
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Chauhan et al. (2011) evaluated the diversity of bacteria from rhizospheric region 
of maize using culture-independent method. Proteobacteria and Actinobacteria 
were found to be the second most dominating group in clone library. García-
Salamanca et al. (2013) studied the bacterial diversity from the rhizospheric region 
of maize and the surrounding carbonate-rich bulk soil. Pseudomonas and Lysobacter 
were found to be the predominant genera in the rhizospheric region. In a study of Li 
et al. (2014), diversity of bacteria in the rhizosphere of maize cultivar was studied, 
and the dominant genera found included Burkholderia, Chitinophaga, Dyella, 
Massilia, Ralstonia, and Sphingobium, and the study also suggested that the rhizo-
spheric bacterial community structures considerably changed through different 
stages of growth. Arenimonas, Flavobacterium, Massilia, and Ohtaekwangia were 
relatively abundant at early growth stages, while genera Bradyrhizobium, 
Burkholderia, Chitinophaga, Dyella, Ralstonia, Sphingobium, and Variovorax were 
dominant at later stages.

2.3.3	 �Rice (Oryza sativa)

Rice is another major food crop consumed by nearly half of the world’s population. 
It is one of the nutritious crops for humans and caloric intake providing near about 
one-fifth of the calories consumed worldwide by the humans (Center 2010). Rice 
can be grown in different environments depending on the availability of the water 
(Maclean et al. 2002). Further, nutrient requirement is very high with nitrogen being 
most essential for their growth, development, and grain production. Rice crops 
remove around 16–17  kg nitrogen for the production of each ton of rough rice 
including straw. But, most of the soils around the world for growing rice are defi-
cient in nitrogen and nitrogen fertilizers so as to meet a rice crop’s nitrogen demand. 
Urea is most commonly applied as the N source for production of rice. But the 
efficiency of added urea-N is generally very low, often only 30–40%, and in some 
cases even lower. This low N use efficiency is mainly attributed to denitrification, 
NH3 volatilization, and leaching losses (Choudhury and Kennedy 2005).

The aerobic bacteria are mostly associated with the upland rice for the fixation of 
the nitrogen, whereas in wetland cultures both the aerobic and the anaerobic bacte-
ria fix the atmospheric nitrogen. Aerobic bacteria such as the Azotobacter live in the 
oxygenated rhizosphere of the rice plant and fix atmospheric N, and anaerobic bac-
teria, Clostridium, live in the reduced layer of the soil and fix atmospheric N. Further, 
the wetland ecosystem is a favorable habitat for the aquatic biota such as blue green 
algae and Azolla. Azolla in symbiotic association with Anabaena fix a substantial 
amount of nitrogen.

Tripathi et al. (2002) studied the diversity of salt-tolerant rhizobacteria associated 
with rice, and the isolates were identified as Pseudomonas aeruginosa, Serratia 
marcescens, Alcaligenes xylosoxidans, and Ochrobactrum anthropi. Gopalakrishnan 
et  al. (2011) isolated Pseudomonas plecoglossicida, Brevibacterium antiquum, 
Bacillus altitudinis, Enterobacter ludwigii, Acinetobacter tandoii, and Pseudomonas 
monteilii from rice rhizosphere. In a study of Samuel and Muthukkaruppan (2011), 
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the diversity of rhizospheric bacteria associated with the rice were Azotobacter sp., 
Azospirillum sp., Bacillus sp., Phosphobacteria sp., and Pseudomonas sp. Arjun 
and Harikrishnan (2011) did the metagenomic analysis of the bacterial diversity in 
the rhizosphere of the rice; the bacterial taxa associated were Proteobacteria, 
Firmicutes, Bacteroidetes, and Acidobacteria. Joshi et al. (2011) recovered 335 iso-
lates from rhizosphere of irrigated and rainfed rice plants to study bacterial diver-
sity. Approximately 27% of the isolates were Bacillus sp. which were followed by 
26% Pseudomonas sp. which was followed by Azotobacter sp. (5%), Flavobacterium 
sp. (7%), Serratia sp. (4%), and Klebsiella sp. (6%). The other genera observed in 
low frequency included Enterobacter sp., Micrococcus sp., and Staphylococcus 
sp. Shrivastava (2013) isolated Pseudomonas, Klebsiella, Azotobacter, and 
Agrobacterium from rhizospheric region of rice from Nepal. Pseudomonas pleco­
glossicida, Pseudomonas monteilii, Pseudomonas mosselii, Pseudomonas libanen­
sis, and Pseudomonas aeruginosa have been isolated from rhizosphere of rice 
grown in Sholavandan by Rameshkumar et al. (2014).

2.3.4	 �Sugarcane (Saccharum officinarum)

Grasses comprise of an important source of food all over the world. Particularly, 
grasses, including wheat, maize, rice, sorghum, and sugarcane, currently have much 
of their nitrogen needs being fulfilled by costly mineral fertilizers. Sugarcane is a 
semi-perennial grass which belongs to the Poaceae family and is extremely adapted 
to the tropical climate. It is one of the important crops grown around the world with 
Brazil being the leading producer. Even it was the first economically important crop 
which has been grown in Brazil since the sixteenth century and still plays a central 
role in economy of Brazil. In Brazil, the production of sugarcane is the chief source 
of employment simultaneously being an inducer of scientific development. In 2009, 
the annual production of sugarcane was more than 500 million tons in Brazil (http://
www.unica.com.br/). In the last few years, culture of sugarcane is gaining attention 
in countries such as Brazil, the United States, and China because of bioethanol pro-
duction (Qiu et al. 2010; Walter et al. 2008). In Khuzestan, culture of sugarcane has 
a major role in providing sugar, and the industry developed in this region is the 
producer of more than half of the country’s sugar.

Microorganisms which are associated with sugarcane play an essential role in 
maintaining fertility of soil as well as health of plant. Many of these associated 
microbes can act as biofertilizers increasing the competence of absorption of nutri-
ents by the plants and producing various plant growth-promoting substances addi-
tionally also increasing tolerance to various abiotic and biotic stresses. So, a basic 
understanding of microbial communities associated with sugarcane is very important 
for the instant application.

Pisa et al. (2011) studied the diversity of bacteria from rhizospheric soil of sug-
arcane at different times and under different nitrogen fertilization conditions. The 
predominating phylum was Proteobacteria (29.6%), which was followed by 
Acidobacteria (23.4%), Bacteroidetes (12.1%), Firmicutes (10.2%), and 

2  Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion…

http://www.unica.com.br/
http://www.unica.com.br/


www.manaraa.com

34

Actinobacteria (5.6%). Ratón et  al. (2012) isolated and characterized aerobic 
endospore-forming bacilli from rhizospheric region of sugarcane and further 
selected the strains with agriculture potentialities. A total of 18 strains were isolated 
on N-free medium. On the basis of phenotype and analysis of the 5′ end hypervari-
able region sequences of 16S rRNA, seven strains belonging to Bacillus (Bacillaceae 
family), four belonging to Paenibacillus, six belonging to Brevibacillus, and one 
strain of Cohnella belonging to Paenibacillaceae family were identified. Lamizadeh 
et al. (2016) isolated and identified plant growth-promoting rhizobacteria from the 
rhizosphere region of sugarcane in saline and non-saline soil. The isolates identified 
from saline soil included Bacillus sp., Corynebacterium sp., Enterobacter sp., 
Micrococcus sp., Paenibacillus sp., Pediococcus sp., and Pseudomonas sp., whereas 
Arthrobacter sp., Bacillus sp., Paenibacillus sp., and Pseudomonas sp. were identi-
fied from non-saline soils.

2.3.5	 �Soybean (Glycine max)

Soybean occupies an important place among different crop ecosystems. It is con-
sumed by humans as it is a rich source of protein. It is a subtropical legume requir-
ing a temperature of 25–30 °C for optimum growth, nodulation, and fixation of the 
nitrogen. Suboptimal root zone temperature below 25 °C can badly affect the growth 
of soybean. Further, it is also prone to many diseases among which the major ones 
include collar rot, charcoal rot, bacterial pustule, anthracnose, powdery mildew, etc. 
Diversity of rhizobacteria with different plant growth-promoting attributes associ-
ated with soybean has been studied.

Wahyudi et al. (2011) isolated Bacillus sp. from the rhizospheric region of the 
soybean and also studied the plant growth-promoting traits of the isolates. A total of 
118 Bacillus sp. were isolated, and among 118 isolates 90, 12, and 11 produced 
phytohormones, siderophores, and solubilized phosphorus, respectively. Three iso-
lates inhibited the growth of Fusarium oxysporum, nine inhibited the growth of 
Rhizoctonia solani, and one inhibited the growth of Sclerotium rolfsii. Sugiyama 
et al. (2014) studied the changes in the rhizobacterial community associated with 
soybean with growth. The physiological properties were studied by a community-
level substrate utilization assay with BioLog Eco plates, whereas the composition 
was studied by gene pyrosequencing. By pyrosequencing, it was demonstrated that 
in the rhizospheric region, Proteobacteria increased from vegetative to maturity 
stage, while Acidobacteria and Firmicutes showed a decrease in rhizospheric soil 
during growth. Analysis of operational taxonomic units revealed that the bacterial 
communities in the rhizospheric region showed a considerable change with Bacillus, 
Bradyrhizobium, and Rhizobium being abundant plant growth-promoting rhizobacteria. 
Jain et al. (2016) isolated Bacillus sp. associated with rhizosphere of soybean as 
well as studied the plant-promoting attributes. Among ten isolates, nine solubilized 
phosphorus, five produced IAA, and three showed nitrogen-fixing capability. The 
bacterial strain was also used as inoculant for soybean, and the results indicated 
enhancement of shoot and root length, as well as the shoot and root biomass.
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2.3.6	 �Chickpea (Cicer arietinum)

Chickpea is the major legume crops belonging to the family Leguminosae which is 
grown widely in tropical, subtropical, and temperate regions of the world. It is an 
important source of the dietary protein consumed by different preparations as sup-
plementary food. Even though it has high nutritional quality, it also maintains the 
fertility of the soil through its symbiotic nitrogen fixation in association with 
Mesorhizobium species. It is also among the major export commodities with signifi-
cant export market option among the field crops. Joseph et  al. (2012) isolated 
Bacillus, Pseudomonas, Azotobacter, and Rhizobium from rhizosphere of chickpea 
and characterized them for different plant growth-promoting attributes. All the iso-
lates of Bacillus, Pseudomonas, and Azotobacter showed IAA-producing capabil-
ity, whereas 85.7% of Rhizobium produced IAA. 95% of Bacillus sp. followed by 
94.2% of Pseudomonas sp. and 74.2% of Rhizobium and 45% of Azotobacter pro-
duced ammonia, and all isolates were catalase positive. Kaur and Sharma (2013) 
characterized Pseudomonas sp. on the basis of morphological and biochemical 
characteristics from the rhizosphere of chickpea and screened for multiple plant 
growth-promoting activities including IAA production, P-solubilization, and pro-
duction of ammonia, HCN, and siderophores, as well as studied the antibiotic resis-
tance spectra. IAA production was in the range of 66.79 μg/ml to 70.05 μg/ml, 70% 
isolates solubilized phosphorus, and two among them produced ammonia, HCN, 
and siderophores. 70% of the isolates showed resistance to ampicillin. Further two 
isolates improved the seed germination in the two varieties of the chickpea.

2.4	 �Biotechnological Agricultural Applications of PGP 
Microbes for Alleviation of Abiotic Stress in Plants

Further, the researches on the microbial diversity of the rhizospheric region have 
been divided into different areas of interest. Some studies have been conducted for 
the determining and classifying rhizospheric communities; some researchers have 
focused on the outcomes of inoculating the plants with PGPR. Orhan et al. (2006) 
studied the effects of two plant growth-promoting Bacillus strains, one capable of 
fixing nitrogen (OSU-142) and another one possessing capability to fix atmospheric 
nitrogen as well solubilizing phosphorus (M3) alone as well as in combination on 
organically grown primocane-fruiting raspberry. The results demonstrated the 
increase in the shoot length and crop yield and improvement of the fruit quality. Son 
et  al. (2006) studied the effect of inoculating soybean in rotational system with 
Bradyrhizobium japonicum and phosphate-solubilizing bacteria, Pseudomonas sp. 
The results demonstrated that application of Bradyrhizobium japonicum and 
Pseudomonas sp. can increase the number of nodules, dry weight of nodules, yield 
of grains, yield components, nutrient availability in soil, and also uptake by soybean 
crop. El-Azeem et al. (2007) inoculated faba bean with different strains of PGPR in 
a greenhouse experiment. The study observed increase in the biomass straw, seeds, 
and total yields, respectively.
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Shaharoona et al. (2008) studied the effect of inoculating wheat with Pseudomonas 
fluorescens; the increase in the root weight, number of tillers, grain yield, and straw 
yield was observed. Akhtar et al. (2009) observed the increase in growth and yield 
of wheat when PGPR and compost in mixture with chemical fertilizer were used. 
Gholami et al. (2009) inoculated maize with Azospirillum brasilense, Azospirillum 
lipoferum, Pseudomonas fluorescens, and Pseudomonas putida. The results revealed 
increase in seed germination, seedling vigor of maize, leaf and shoot dry weight, 
leaf surface area, plant height, seed weight, number of seed per year, and leaf area. 
Hassen and Labuschagne (2010) found increase in the plant shoot weights, root 
weights, yield, cane length, number of clusters per cane, and number of berries per 
cane in wheat when inoculated with Bacillus cereus, Bacillus megaterium, Bacillus 
simplex, and Paenibacillus alvei singly as well as in combination.

In a study of Abbasi et al. (2011), a significant increase in all the studied param-
eters was observed in PGPR-inoculated wheat plants. Further, combination of the 
nitrogen and PGPR increased the yield and nutrition in the treated plants. Rokhzadi 
and Toashih (2011) studied the effects of Azospirillum, Azotobacter, Mesorhizobium, 
and Pseudomonas singly as well as in consortium on the uptake of the nutrient, the 
growth, as well as the yield of the chickpea under field conditions. The maximum 
dry weight of root nodules as well as enhanced phosphorus concentration was 
observed in consortium. Each inoculation statistically increased the grain yield, bio-
mass dry weight, and nitrogen and phosphorus uptake of grains as compared to the 
control plants. Rafi et  al. (2017) inoculated foxtail millet with Azospirillum 
lipoferum and PSB alone as well as in combination, and a noteworthy increase in 
the plant height, root and shoot dry weight, and panicle and seed weight was 
observed.

Nagaraja et al. (2016) investigated antifungal efficiency of Azotobacter nigricans 
on Fusarium infection, total seedlings mass, root and shoot length, and seed germi-
nation on maize, sorghum, and wheat. The results demonstrated reduction in growth 
of Fusarium equiseti, Fusarium graminearum, Fusarium poae, and Fusarium spo­
rotrichioides and up to 50% decrease in incidence of Fusarium infection in all the 
three cereals under treatment. Further, a twofold increase in the total mass of the 
maize seedlings was also observed. The highest vigor index was recorded as 
11,616.7, 1321, and 1584.8 in sorghum, maize, and wheat against Fusarium acumi­
natum, Fusarium crookwellense, and Fusarium sporotrichioides, respectively. The 
germination incidence was 67%, 64%, and 56% in sorghum, maize, and wheat, 
respectively. Kumar et  al. (2017a) inoculated wheat with phosphate-solubilizing 
and nitrogen-fixing rhizobacteria including Serratia marcescens, Microbacterium 
arborescens, and Enterobacter sp. alone as well as in combination to study their 
effect on growth promotion, yield, and nutrient uptake. Co-inoculation of three rhi-
zobacteria showed best results in all the studied parameters.

The rhizospheric microbiomes may be used for mitigation of abiotic stress in 
plants such as high/low temperatures, alkaline/acidic, and drought and saline envi-
ronments. There are many reports on plant growth promotion by rhizospheric 
microbiomes with multifarious PGP attributes under the normal as well as under the 
abiotic stress condition, e.g., for alkalinity (Rajput et  al. 2013; Srivastava et  al. 
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2013), drought (Verma et al. 2016b), saline environments (Saxena et al. 2016), high 
temperature (Ali et  al. 2011; Verma et  al. 2016b), low temperature (Yadav et  al. 
2017e), and drought (Kour et al. 2017b; Yadav and Yadav 2018a) (Table 2.1). There 
are vast numbers of reports of rhizospheric microbiomes for plant growth, crop 
yield, and mitigation of abiotic stress using single inoculums (Table  2.2) or by 
microbial consortium (Table 2.3).

2.5	 �Mechanisms of Plant Growth Promotion

Rhizosphere is basically the narrow zone surrounded and influenced by plant roots 
and is a hot spot for many organisms. It is one of the most complex ecosystems on 
the earth (Hinsinger et al. 2009; Hinsinger and Marschner 2006; Pierret et al. 2007; 
Saxena et al. 2016). Numbers of organisms are found in the rhizosphere including 
bacteria, fungi, oomycetes, protozoa, algae, viruses, and archaea (Biswas et  al. 
2018; Gaba et al. 2017; Kumar et al. 2017c; Suman et al. 2016a; Yadav 2009; Yadav 
et al. 2015c). The microbes play an important role in nitrogen, sulfur, and phospho-
rus cycling, further also making contribution to the stabilization of the soil structure, 
accumulation of organic residue, fixation of nitrogen, and removal of toxins. Further, 
they also contribute in maintaining the health of the crops. Additionally, they pro-
mote plant growth and also protect plants from the attack of the pathogens by dif-
ferent mechanisms such as biofertilization, stimulation of the root growth, 
rhizoremediation, control of the abiotic stress, and disease control. They are 
regarded as the most sensitive biological indicators for monitoring the soil quality 
changes (Niemi et al. 2001).

Though a variety of organisms are found in the rhizosphere, most studies on 
the rhizospheric microbiology especially those describing cooperative microbial 
interactions have focused mainly on bacteria and fungi. The prokaryotic bacteria 
and eukaryotic fungi have different trophic habitats, and a variety of non-symbi-
otic as well as symbiotic relationships both detrimental (pathogenic) and benefi-
cial (mutualistic) have been described. Rhizospheric soil is well known to host a 
variety of plant growth-promoting rhizobacteria (PGPR). The range of rhizobac-
teria which have been reported to increase growth of the plants and also control 
various pathogens of plants includes Alcaligenes, Arthrobacter, Azospirillum, 
Azotobacter, Bacillus, Bradyrhizobium, Burkholderia, Enterobacter, 
Flavobacterium, Klebsiella, Mesorhizobium, Pseudomonas, Rhodococcus, 
Serratia, and Streptomyces (Yadav et  al. 2018a, 2018b) (Verma et  al. 2017a). 
PGPR may be defined as the rhizobacteria inhabiting the roots and exerting a 
positive effect either through direct or the indirect mechanisms on the plant. 
PGPR are also termed as plant health-promoting rhizobacteria (PHPR) or nodule-
promoting rhizobacteria (NPR). PGPR offer an environment-friendly means for 
increasing the crop productivity as well as sustainability in agriculture. There 
are lot of PGPR inoculants that have been commercialized and seem to promote 
the growth through either of the following mechanisms:
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Table 2.1  Plant growth-promoting rhizobacteria associated with diverse host plant with multi-
farious PGP attributes

Rhizospheric microbiomes Stress IAA P N2 ACC Sid References
Amaranthus
 � Pseudomonas sp. Low temp + + − − + Mishra et al. (2011)
Brassica
 � Pseudomonas 

koreensis
Low temp + + − − + Mishra et al. (2011)

 � Pseudomonas putida Low temp + + − − + Mishra et al. (2011)
Cabbage
 � Pseudomonas sp. Low temp + + − − + Mishra et al. (2011)
Canola
 � Pseudomonas 

fluorescens
Salinity + − + − Akhgar et al. (2014)

Foxtail millet
 � Enterobacter 

hormaechei
Drought − − − + − Niu et al. (2017)

 � Pseudomonas 
fluorescens

Drought − − − + − Niu et al. (2017)

 � Pseudomonas migulae Drought − − − + − Niu et al. (2017)
Garlic
 � Pseudomonas jessani Low temp + + − − + Mishra et al. (2011)
Maize
 � Bacillus 

amyloliquefaciens
Drought + + − − + Vardharajula et al. 

(2011)
 � Bacillus licheniformis Drought + + − − + Vardharajula et al. 

(2011)
 � Pseudomonas 

entomophila
Drought + + − − + Sandhya et al. (2010)

 � Bacillus subtilis Drought + + − − + Vardharajula et al. 
(2011)

 � Bacillus thuringiensis Drought + + − − + Vardharajula et al. 
(2011)

 � Paenibacillus 
favisporus

Drought + + − − − Vardharajula et al. 
(2011)

Pea
 � Pseudomonas 

fluorescens
Low temp + + − − + Mishra et al. (2011)

 � Pseudomonas lurida Low temp + + − − + Mishra et al. (2011)
Pearl millet
 � Pseudomonas stutzeri Drought + + − − + Sandhya et al. (2010)
Rice
 � Alcaligenes sp. Salinity − − − + − Bal et al. (2013)
 � Bacillus sp. Salinity − − − + − Bal et al. (2013)
 � Enterobacter sp. Halophilic + + − − − Hingole and Pathak 

(2016)

(continued)
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Table 2.1  (continued)

Rhizospheric microbiomes Stress IAA P N2 ACC Sid References
 � Enterobacter sp. Salinity + + − + + Sarkar et al. (2018a)
 � Ochrobactrum sp. Salinity − − − + − Bal et al. (2013)
Wheat
 � Achromobacter spanius High temp + + + − + Verma et al. (2016b)
 � Alcaligenes faecalis High temp + + + − + Verma et al. (2016b)
 � Arthrobacter sp. Salinity + + − − + Upadhyay et al. (2009)
 � B. sporothermodurans Salinity + − − + Upadhyay et al. (2009)
 � Bacillus altitudinis High temp + + − − + Verma et al. (2016b)
 � Bacillus 

amyloliquefaciens
Low temp + + − − + Verma et al. (2015b)

 � Bacillus aquimaris Salinity + − − + Upadhyay et al. (2009)
 � Bacillus arsenicus Salinity + + − − + Upadhyay et al. (2009)
 � Bacillus cereus Low temp − − − − + Verma et al. (2015b)
 � Bacillus cereus Salinity + + − − + Upadhyay et al. (2009)
 � Bacillus flexus High temp − + − − + Verma et al. (2016b)
 � Bacillus flexus Low temp − + − − Verma et al. (2015b)
 � Bacillus licheniformis High temp − + + − − Verma et al. (2016b)
 � Bacillus megaterium Low temp + + − − + Verma et al. (2015b)
 � Bacillus mojavensis High temp + + + − − Verma et al. (2016b)
 � Bacillus pumilus Salinity + − − + Upadhyay et al. (2009)
 � Bacillus siamensis High temp + − − − − Verma et al. (2016b)
 � Bacillus subtilis High temp + + − + Verma et al. (2016b)
 � Bacillus subtilis Salinity + + − − − Upadhyay et al. (2009)
 � Bacillus thuringiensis Low temp − + − − + Verma et al. (2015b)
 � Delftia acidovorans High temp + + + − + Verma et al. (2016b)
 � Delftia lacustris High temp + + − + Verma et al. (2016b)
 � M. mesophilicum High temp + + − − + Verma et al. (2016b)
 � M. phyllosphaerae Low temp + − + + Verma et al. (2015b)
 � Planococcus 

rifietoensis
Alkalinity + + − + − Rajput et al. (2013)

 � Pseudomonas 
aeruginosa

Low temp + − + + Verma et al. (2015b)

 � Pseudomonas 
fluorescens

Low temp + + − + + Verma et al. (2015b)

 � Pseudomonas japonica High temp − + − − − Verma et al. (2016b)
 � Pseudomonas 

medicona
Salinity + − − + Upadhyay et al. (2009)

 � Pseudomonas poae High temp + + + − + Verma et al. (2016b)
 � Pseudomonas stutzeri High temp + + − − Verma et al. (2016b)
 � Rhodobacter 

sphaeroides
High temp + − − − − Verma et al. (2016b)

 � Salmonella bongori High temp + − − − + Verma et al. (2016b)
 � Staphylococcus 

succinus
High temp − − − − + Verma et al. (2016b)

IAA indole acetic acids, P phosphorus solubilization, N2 nitrogen fixation, ACC 1-aminocycloprop
ane-1-carboxylate deaminase, Sid siderophores
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Table 2.2  Agricultural applications of PGP microbes for alleviation of diverse abiotic stress

PGPR
Crop 
inoculated

Stress 
ameliorated Effect References

Achromobacter 
piechaudii

Tomato Salinity Fresh and dry weight Mayak et al. 
(2004)

Arthrobacter Tomato Salinity Seed germination, 
vigor index, biomass

Fan et al. 
(2016)

Arthrobacter 
protophormiae

Wheat Salinity Photosynthetic 
efficiency, IAA 
content,

Barnawal et al. 
(2017)

Arthrobacter sp. 
SU18

Wheat Salinity Dry biomass, total 
soluble sugars, and 
proline content

Upadhyay et al. 
(2012)

Azospirillum 
brasilense

White 
clover

Salinity Shoot/root length, 
biomass, leaf area, 
and chlorophyll

Khalid et al. 
(2017)

Azospirillum 
brasilense

Wheat Drought Mg, Ca, K content Creus et al. 
(2004)

Bacillus 
amyloliquefaciens

Wheat Cold stress Growth and 
alleviation

Verma et al. 
(2015a)

Bacillus aquimaris 
DY-3

Maize Salinity Chlorophyll content, 
leaf relative water 
content

Li and Jiang 
(2017)

Bacillus atrophaeus 
EY6

Strawberry Salinity Growth, chlorophyll 
content, nutrient 
uptake, and yield

Karlidag et al. 
(2013)

Bacillus megaterium Tomato Salinity Seed germination, 
seedling length, vigor 
index

Fan et al. 
(2016)

Bacillus megaterium Wheat Cold stress Dry weight Turan et al. 
(2012)

Bacillus mojavensis Wheat Salinity Biomass, chlorophyll 
content, and nutrient 
uptake

Pourbabaee 
et al. (2016)

Bacillus pumilus Rice Salinity Germination, 
survival, dry weight, 
plant height

Jha and 
Subramanian 
(2013)

Bacillus safensis Wheat High 
temperature

Chlorophyll content, 
accumulation of 
osmolytes

Sarkar et al. 
(2018b)

Bacillus sp. Sorghum Drought Shoot length, root 
biomass, chlorophyll 
content

Grover et al. 
(2014)

Bacillus sp. Potato Salinity mRNA expression 
levels, proline content

Gururani et al. 
(2013)

Bacillus sp. Potato Heavy metal mRNA expression 
levels, proline content

Gururani et al. 
(2013)

Bacillus sp. Potato Drought mRNA expression 
levels, proline content

Gururani et al. 
(2013)
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Table 2.2  (continued)

PGPR
Crop 
inoculated

Stress 
ameliorated Effect References

Bacillus sphaericus Strawberry Salinity Growth, chlorophyll 
content, nutrient 
uptake, and yield

Karlidag et al. 
(2013)

Bacillus subtilis 
LDR2

Wheat Drought Photosynthetic 
efficiency, IAA 
content

Barnawal et al. 
(2017)

Bacillus subtilis EY2 Strawberry Salinity Growth, chlorophyll 
content, nutrient 
uptake, and yield

Karlidag et al. 
(2013)

Bacillus subtilis 
SU47

Wheat Salinity Dry biomass, total 
soluble sugars, and 
proline content

Upadhyay et al. 
(2012)

Bacillus sp. Maize Drought Proline, sugars, free 
amino acids

Vardharajula 
et al. (2011)

Bradyrhizobium 
japonicum

Soybean Salinity Antioxidant activity, 
proline

Methé et al. 
(2005)

Burkholderia 
phytofirmans PsJN

Wheat Drought Ionic balance, 
antioxidant levels, 
NPK uptake

Naveed et al. 
(2014)

Dietzia 
natronolimnaea 
STR1

Wheat Salinity Photosynthetic 
efficiency, IAA 
content

Barnawal et al. 
(2017)

Enterobacter 
aerogenes

Maize Salinity Growth and yield Nadeem et al. 
(2007)

Enterobacter cloacae 
ZNP-3

Wheat Salinity Biomass and 
chlorophyll content

Singh et al. 
(2017)

Enterobacter cloacae 
ZNP-3

Wheat High 
temperature

Biomass and growth Singh et al. 
(2017)

Enterobacter cloacae 
HSNJ4

Canola Salinity Increased IAA 
content and reduced 
ethylene emission

Li et al. (2017)

Enterobacter sp. P23 Rice Salinity Growth and yield Sarkar et al. 
(2018a)

Enterobacter sp. 
S16–3

Canola Osmotic 
stress

Root volume Oskuei et al. 
(2017)

Exiguobacterium 
acetylicum

Pea Cold stress Germination and 
early growth 
parameters

Selvakumar 
et al. (2009)

Klebsiella sp. Oat Salinity Shoot /root length, 
biomass and relative 
water content

Sapre et al. 
(2018)

Klebsiella sp. Wheat Drought Water status, 
membrane integrity

Gontia-Mishra 
et al. (2016)

Klebsiella sp. IG 3 Oat Salinity Plant growth, genes 
expression

Sapre et al. 
(2018)

(continued)
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Table 2.2  (continued)

PGPR
Crop 
inoculated

Stress 
ameliorated Effect References

Klebsiella variicola Soybean Flooding Quantum efficiency 
of chlorophyll

Kim et al. 
(2017)

Klebsiella variicola 
F2

Maize Drought Accumulation of 
choline

Gou et al. 
(2015)

Kocuria erythromyxa 
EY43

Strawberry Salinity Growth, chlorophyll 
content, nutrient 
uptake

Karlidag et al. 
(2013)

Kocuria erythromyxa Radish Salinity Biomass, chlorophyll 
content, relative water 
content

Yildirim et al. 
(2008)

Pantoea dispersa Wheat Cold stress Growth and nutrient 
uptake

Selvakumar 
et al. (2008)

Planococcus 
rifietoensis

Wheat Salinity Shoot, root length, 
biomass, growth, and 
yield

Rajput et al. 
(2013)

Pseudochrobactrum 
kiredjianiae

Wheat Cold stress Physiological 
parameters

Qin et al. 
(2017)

Pseudomonas 
aeruginosa

Wheat Heavy metal Uptake of NP, leaf 
chlorophyll, total 
soluble protein

Islam et al. 
(2014)

Pseudomonas 
aeruginosa PRR1

Rice Salinity Germination 
percentage, shoot and 
root length

Kumar et al. 
(2017b)

Pseudomonas 
fluorescens

Maize Salinity Growth and yield Nadeem et al. 
(2007)

Pseudomonas 
fluorescens

Foxtail 
millet

Drought Soil moisture, root 
adhering soil/root 
tissue ratio

Niu et al. 
(2017)

Pseudomonas 
fluorescens YX2

Maize Drought Accumulation of 
choline

Gou et al. 
(2015)

Pseudomonas lurida Wheat Cold stress Growth and nutrient 
uptake

Selvakumar 
et al. (2011)

Pseudomonas 
pseudoalcaligenes

Rice Salinity Germination, 
survival, dry weight, 
plant height

Jha and 
Subramanian 
(2013)

Pseudomonas putida 
Rs-198

Cotton Salinity Biomass, absorption 
of the micronutrients

Yao et al. 
(2010)

Pseudomonas putida 
GAP-P45

Sunflower Drought Plant biomass, and 
root adhering soil/
root tissue ratio

(Sandhya et al. 
2009)

Pseudomonas putida 
N21

Wheat Salinity Shoot/ root length, 
grain yield, 
chlorophyll content

Zahir et al. 
(2009)

Pseudomonas putida 
AKMP7

Wheat Heat stress Biomass, chlorophyll, 
sugars, amino acids

Ali et al. (2011)
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Suppression of the various plant diseases; in this context they are referred to as the 
bioprotectants.

Improved nutrient acquisition where they are referred to as the biofertilizers.
The phytohormone production where they are known as biostimulants (Kour et al. 

2017a, b).

2.5.1	 �Biological Nitrogen Fixation

Nitrogen is the major limiting factor for plant growth; the application of N2-fixing 
bacteria as biofertilizer has emerged as one of the most efficient and environmen-
tally sustainable methods for increasing the growth and yield of crop plants and an 
attractive way of replacing chemical fertilizers (Ashrafuzzaman et  al. 2009). 

Table 2.2  (continued)

PGPR
Crop 
inoculated

Stress 
ameliorated Effect References

Pseudomonas sp. Pea Drought Shoot, root length, 
biomass, grain yield

Arshad et al. 
(2008)

Pseudomonas sp. Maize Drought Proline, sugars, free 
amino acids

Sandhya et al. 
(2010)

Pseudomonas sp. Asparagus Drought Enhanced growth Liddycoat et al. 
(2009)

Pseudomonas sp. Wheat Low 
temperature

Chlorophyll, total 
phenolics, and 
relative water content

Mishra et al. 
(2011)

Pseudomonas 
syringae

Maize Salinity Growth and yield Nadeem et al. 
(2007)

Pseudomonas 
vancouverensis

Wheat Cold stress Germination Mishra et al. 
(2008)

Pseudomonas sp. 
AKM-P6

Sorghum High 
temperature

Proline, chlorophyll, 
sugars, amino acids, 
and proteins

Ali et al. (2009)

Raoultella planticola 
YL2

Maize Drought Accumulation of 
choline

Gou et al. 
(2015)

Serratia 
nematodiphila 
PEJ1011

Pepper Low 
temperature

Growth, shoot, root 
length, biomass

Kang et al. 
(2015)

Sphingomonas faeni Finger 
millet

Cold stress Shoot, root length, 
biomass, antioxidant 
activity

Srinivasan et al. 
(2017)

Staphylococcus 
kloosii

Radish Salinity Biomass, and relative 
water content

Yildirim et al. 
(2008)

Staphylococcus 
kloosii EY37

Strawberry Salinity Growth, chlorophyll 
content, nutrient 
uptake, and yield

Karlidag et al. 
(2013)

Stenotrophomonas 
maltophilia

Wheat Salinity Shoot/root length, 
chlorophyll content

Singh and Jha 
(2017)
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Nitrogen-fixing endophytic bacteria belonging to different genera including 
Arthrobacter, Azoarcus, Azospirillum, Azotobacter, Bacillus, Enterobacter, 
Gluconacetobacter, Herbaspirillum, Klebsiella, Pseudomonas, and Serratia have 
been reported and well characterized for biological nitrogen fixation (Yadav and 
Saxena 2018; Yadav et al. 2017c, 2018c). Figueiredo et al. (2008) reported that use 
of PGPR for sustainable agriculture has tremendously increased in different parts of 
the world. Microbes are gaining a lot of importance in agriculture for promoting 

Table 2.3  Agricultural applications of microbial consortium for plant growth promotion and alle-
viation of abiotic stress

Consortium of 
PGPR

Crop 
inoculated

Stress 
ameliorated

Effect References

Ochrobactrum 
pseudogrignonense 
RJ12

Vigna mungo Drought Seed germination 
percentage, root, shoot 
length, dry weight, 
enzyme activity cellular 
osmolytes, chlorophyll 
content, relative water 
content, root recovery 
intension

Saikia et al. 
(2018)

Pseudomonas sp. 
RJ15
Bacillus subtilis 
RJ46

Ochrobactrum 
pseudogrignonense 
RJ12

Pisum 
sativum

Drought Seed germination 
percentage, root, shoot 
length, dry weight, 
enzyme activity cellular 
osmolytes, chlorophyll 
content, relative water 
content, root recovery 
intension

Saikia et al. 
(2018)

Pseudomonas sp. 
RJ15
Bacillus subtilis 
RJ46

Azospirillum 
brasilense Ab-V6

Zea mays Salinity Upregulation of 
antioxidant activity-
related genes

Fukami et al. 
(2018)

Rhizobium tropici 
CIAT 899
Bacillus sp. AZ-1 Cicer 

arietinum
Heavy 
metal

Seed germination, shoot 
and root length, root 
and shoot fresh weight, 
number of seeds and 
weight of seeds

Amin and 
Latif (2017)Enterobacter 

cloacae AZ-3

Bacillus pumilus Oryza sativa Salinity Germination, survival, 
dry weight, plant height

Jha and 
Subramanian 
(2013)

Pseudomonas 
pseudoalcaligenes
Bacillus cereus 
AR156

Solanum 
lycopersicum

Cold stress Soluble sugar, proline, 
osmotin accumulation, 
antioxidant defense 
system, stress-related 
gene activation

Wang et al. 
(2016)

Bacillus subtilis 
SM21
Serratia sp. XY21
Bacillus 
amyloliquefaciens 
Bk7 Brevibacillus 
laterosporus B4

Oryza sativa Cold stress Growth, enzymatic 
activity

Kakar et al. 
(2016)
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circulation of various plant nutrients, thereby reducing the need of chemical fertil-
izers. There are a number of nitrogen-fixing bacteria in rhizospheric region which 
has been used in nonlegume crop species including rice, wheat, maize, sugarcane, 
sugar beet, etc. The nitrogen fixers include symbiotic nitrogen fixers like Rhizobium 
which are obligate symbionts in the leguminous plants and Frankia in non-
leguminous plants and non-symbiotic nitrogen fixers which may either be free-
living, associative symbiotic, or endophytic including Cyanobacteria, Azotobacter, 
Azospirillum, Acetobacter diazotrophicus, Azoarcus, etc. (Marag et al. 2015; Rana 
et al. 2017, 2016a, b; Saharan and Nehra 2011).

2.5.2	 �Symbiotic Nitrogen Fixers

The most commonly studied symbiotic nitrogen-fixing bacteria include Rhizobium 
and Frankia. In the last few years, a considerable change in the taxonomic status of 
Rhizobia has come out. The current status of taxonomy of Rhizobia has been out-
lined in a study of Sahgal and Johri (2003), according to which there are about 36 
species of Rhizobia which are distributed among 7 different genera which are 
Allorhizobium, Azorhizobium, Bradyrhizobium, Mesorhizobium, Methylobacterium, 
Rhizobium, and Sinorhizobium derived based on the polyphasic taxonomic approach. 
Rhizobium basically forms a symbiotic association with the roots of the leguminous 
plants and forms nodules, and this relationship has coevolved for 10 millions of 
years. The process by which the nodules are formed involves a very complex array 
of the signaling molecules, molecular recognition, and regulation. Legumes basi-
cally secrete flavonoids which are secondary metabolites into the soil. Rhizobia 
being motile get attached to these flavonoids and ultimately to the rhizoplane. These 
flavonoids also induce bacteria to secrete specific signaling molecules which are 
known as the nod factors (Werner 2008), which are critical molecules for the nodule 
formation. These nod factors then bind to the receptors which are present in the root 
hair cell and cause root hair curling and ultimately the penetration of the bacterium 
into the root hair cell. The nod factor alone is not the only requirement for nodule 
formation, but various bacterial cell structures such as the lipopolysaccharides 
(LPS), β-glucans, exopolysaccharides (EPS), capsular proteins, and K antigen are 
also recognized by the plants and help in determining the host specificity (Fraysse 
et al. 2003; Mathis et al. 2005; Spaink 2000). The formation of the root nodules is 
mediated by nod genes. In these root nodules, the atmospheric nitrogen is fixed in 
which there is reduction of the molecular nitrogen to ammonia which is then uti-
lized by the plants for the synthesis of various proteins, vitamins, and other nitrogen-
containing compounds.

Frankia forms root nodules on about 280 species of the woody plants from 8 
different families, but its symbiotic association is not well understood. Frankia are 
basically used in the land reclamation for timber and fuel wood production and in 
mixed plantations for the purpose of the windbreaks and for shelterbelts. An increase 
in the rhizospheric population has been reported after crop rotation with the 
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nonlegumes. Though their symbiotic associations are important, very limited infor-
mation is available for inoculation practices and use.

2.5.3	 �Associative Symbiotic Nitrogen Fixers

The most commonly used associative symbiotic nitrogen fixers include Azospirillum. 
Azospirillum is basically facultative endophytic diazotroph and belongs to the fam-
ily Spirillaceae. It includes different species Azospirillum amazonense, Azospirillum 
halopraeferens, and Azospirillum brasilense (Potrich et al. 2001). The members of 
this genus fix the atmospheric nitrogen under microaerophilic conditions. It has an 
ability to fix about 20–40 kgha−1 nitrogen and additionally also produces some regu-
latory substances. It is mainly used for the crops such as the maize, sugarcane, pearl 
millet, sorghum, etc. It also helps in the development of root and shoots (González-
López et al. 2005). They are associated mostly with the root and the rhizosphere of 
agriculturally important crops.

2.5.4	 �Free-Living Nitrogen Fixers

Azotobacter is the most extensively used free-living nitrogen fixer. It fixes the atmo-
spheric nitrogen in nonlegumes which include mainly in maize, rice, cotton, vegeta-
bles, etc. The deficiency of the organic matter is basically a limiting factor for its 
proliferation. Azotobacter belongs to the family Azotobacteriaceae which comprises 
of two genera including Azomonas and Azotobacter. Azomonas is non-cyst forming 
which comprises of the three species which include Azomonas agilis, Azomonas 
insignis, and Azomonas macrocytogenes, whereas Azotobacter is cyst forming and 
comprises of the following six species including Azotobacter chroococcum, 
Azotobacter vinelandii, Azotobacter beijerinckii, Azotobacter nigricans, Azotobacter 
armeniacus, and Azotobacter paspali  (Saharan and Nehra 2011). Azotobacter fixes 
atmospheric nitrogen in nonleguminous plants such as the rice, cotton, and vegeta-
bles. They have the capacity to fix about 15–20 kg.ha−1 of N per year. In addition to 
fixation of atmospheric nitrogen, Azotobacter also produces phytohormones such as 
indole acetic acids and siderophores such as the azotobactin.

2.5.5	 �Phytohormone Production

A wide range of microorganisms are found in the rhizosphere which produce vari-
ous regulatory substances which are important for the growth and development of 
the plants. The various phytohormones which are produced by the rhizospheric 
microorganisms include auxins, gibberellins, and cytokinins. There are many 
reports on plant microbiomes producing phytohormones. The phytohormone-
producing rhizospheric microbes, when inoculated to crops, help in plant growth 
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promotion, enhance yield, and increase soil fertility for sustainable agriculture 
(Singh et al. 2016; Yadav et al. 2015a, b, 2018c)

2.5.6	 �Indole Acetic Acid (IAA)

It is one of the most active auxins and it positively affects the growth of the roots. 
IAA affects cell division, extension, and differentiation and seed and tuber germina-
tion, controls various processes of vegetative growth, and increases the rate of 
xylem and root development, pigment formation, and resistance to various stressful 
conditions (Miransari and Smith 2014). Tryptophan is found in root exudates and is 
the precursor for the synthesis of IAA. There are Trp-dependent and Trp-independent 
pathways in plants and bacteria. Physiological evidence for different Trp-dependent 
pathways for synthesis of IAA has been reported in Azospirillum brasilense 
(Carreno-Lopez et al. 2000). Another important mechanism for the biosynthesis of 
IAA via the formation of the indole-3-pyruvic acid and indole-3-acetic aldehyde 
has been found in Pseudomonas, Rhizobium, Bradyrhizobium, Agrobacterium, 
Enterobacter, and Klebsiella (Shilev 2013).

The species of Bradyrhizobium, Mesorhizobium, and Rhizobium despite of being 
the N2 fixers have also been reported to produce IAA under in  vitro conditions 
(Ahmad et al. 2008; Antoun et al. 1998; Wani et al. 2008a, b, c). Other PGPR strains 
including Agrobacterium sp., Alcaligenes piechaudii, Bacillus, Comamonas acidov­
orans, and Pseudomonas have also been reported to secrete IAA (Barazani and 
Friedman 1999; Rajkumar et al. 2006). In a study of Khalid et al. (2004), numerous 
bacterial isolates were recovered from rhizosphere of wheat which produced IAA 
under in vitro conditions, and further, supply of exogenous tryptophan enhanced 
auxin biosynthesis which was ultimately confirmed by high-performance liquid 
chromatography. Bottini et al. (2004) demonstrated the production of IAA and GA 
by P-solubilizers including Enterobacter, Xanthomonas, and Pseudomonas isolated 
from rhizosphere of sorghum plants. Joseph et al. (2012), while working on chick-
pea, found that all the isolates of Azotobacter, Bacillus, and Pseudomonas were 
capable of producing IAA, whereas only 85.7% of Rhizobium could produce IAA.

Chaiharn and Lumyong (2011) screened rhizobacteria for plant growth-
promoting traits such as solubilization of inorganic phosphate and IAA production 
and further evaluated their effect on root elongation of bean and maize seedlings, 
and Klebsiella was found to be the best IAA producer. Further, some microbes pos-
sess the capability to catabolize IAA, and this characteristic feature has been well 
demonstrated in Bradyrhizobium japonicum (Jensen et  al. 1995) and also in 
Pseudomonas putida 1290 (Leveau and Lindow 2005). Pseudomonas putida 1290 
when co-inoculated in Raphanus sativus L. decreased negative effects of higher 
concentrations of IAA produced by pathogenic bacteria Rahnella aquaticus and 
Pseudomonas syringae. The catabolizing property of PGPR could have a positive 
effect on the growth of the plants and might prevent the pathogenic attack (Leveau 
and Lindow 2005).
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2.5.7	 �Gibberellins and Cytokinins

There is a very little information which is available for the production of the gib-
berellins by microorganisms though it is known that symbiotic bacteria have the 
capability to produce gibberellins, auxins, and cytokinins but in very low concentra-
tions when the formation of the nodules takes place as well as when there is high 
duplication rate (Atzorn et al. 1988). The gibberellins are rarely produced by PGPR 
with only Bacillus pumilus and Bacillus licheniformis known to produce gibberel-
lins (Gutiérrez-Mañero et al. 2001). Production of cytokinins has been reported in 
fewer strains of PGPR as compared to auxins. Cytokinins have been demonstrated 
to be produced by strains of Bacillus, Rhizobium, Arthrobacter, Azotobacter, 
Azospirillum, and Pseudomonas. It has been shown that the inoculation of the 
cytokinin-producing bacterium, Bacillus subtilis, enhanced chlorophyll content and 
cytokinin accumulation and ultimately the shoot and root weight  in lettuce 
(Kudoyarova et al. 2014; Arkhipova et al. 2007).

2.5.8	 �ACC Deaminase Activity

Ethylene is a key phytohormone and is known to possess wide range of biological 
activities such as it affects plant growth and development in different ways includ-
ing promotion of root initiation, inhibition of root elongation, promotion of fruit 
ripening, stimulation of seed germination, promotion of leaf abscission, and activa-
tion of the synthesis of other plant hormones (Kang et al. 2010). There are a number 
of mechanisms that have been investigated to reduce the levels of ethylene, and one 
of the best mechanisms to reduce the levels of the ethylene in plants is by the activ-
ity of bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase (Farajzadeh 
et al. 2012; Glick 2005; Jalili et al. 2009). ACC deaminase basically metabolizes 
ACC which is the immediate precursor of ethylene into α-ketobutyric acid and 
ammonia (Arshad et al. 2007; Saleem et al. 2007).

PGPR including Alcaligenes sp., Bacillus pumilus, Pseudomonas sp., and 
Variovorax paradoxus (Belimov et  al. 2001) as well as Azoarcus, Azorhizobium 
caulinodans, Azospirillum sp., Gluconacetobacter diazotrophicus, Herbaspirillum 
sp., Burkholderia vietnamiensis, and others (Dobbelaere et  al. 2003) have been 
identified to show ability to grow on minimal media containing ACC as sole nitro-
gen source. Currently, bacterial strains exhibiting ACC deaminase activity have 
been identified in a wide range of genera such as Acinetobacter, Achromobacter, 
Agrobacterium, Alcaligenes, Azospirillum, Bacillus, Burkholderia, Cronobacter 
sakazakii, Enterobacter, Halomonas, Klebsiella, Mesorhizobium, Methylobacterium 
fujisawaense, Pseudomonas, Ralstonia, Serratia, Rhizobium, Variovorax, and 
Zhihengliuela (Suman et al. 2016b; Verma et al. 2017b; Yadav and Yadav 2018b).

The inoculation of crops with PGPR showing ACC deaminase activity is more 
resistant to the stressful conditions (Zahir et al. 2008). In the study of Arshad et al. 
(2008), it was demonstrated that Pseudomonas sp. with ACC deaminase activity 
provided drought-tolerant Pisum sativum. Bal et al. (2013) evaluated that Alcaligenes 
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sp., Bacillus sp., and Ochrobactrum sp., possessing ACC deaminase activity, 
induced salt tolerance and improved the growth of the rice plants under salinity 
stress.

2.5.9	 �Phosphate Solubilization

Phosphorus is an important macroelement in the nutrition of the plants, next to 
nitrogen, and plays an important role in almost all the metabolic processes of the 
plant including photosynthesis, energy transfer, signal transduction, macromolecu-
lar biosynthesis, and respiration. It is abundantly present in the soil in both organic 
and inorganic forms. Plants are not capable of utilizing phosphate as 95–99% is 
present in the insoluble, immobilized, and precipitated form. Plants are able to uti-
lize phosphate in two soluble forms, i.e., the monobasic (H2PO4) and the diabasic 
(HPO4 2−) ions (Ahemad and Kibret 2014). There are a number of P-solubilizing 
bacteria (PSB) in rhizosphere which use different strategies so as to make unavail-
able forms of phosphorus available for plants so that it can be absorbed. The main 
mechanisms used by PGPR for the solubilization of phosphorus include releasing 
certain complexing or mineral-dissolving compounds, liberating extracellular 
enzymes, or releasing phosphate during substrate degradation (Pandey and 
Maheshwari 2007).

Phosphate-solubilizing PGPR have been included in the genera Arthrobacter, 
Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, 
Microbacterium, Pseudomonas, Rhizobium, Rhodococcus, and Serratia which have 
attracted a great attention of agriculturists as soil inoculums so that plant growth 
and yield can be improved. A number of phosphorus-solubilizing microbes have 
been isolated from rhizosphere of different plants (Yadav et al. 2016b, 2017a, b). 
Chen et  al. (2006) reported Bacillus, Rhodococcus, Arthrobacter, Serratia, 
Chryseobacterium, Gordonia, Phyllobacterium, and Delftia to be P-solubilizers. 
Qin et  al. (2011) demonstrated the capability of rhizobia to solubilize inorganic 
phosphate is mainly associated with acidification of rhizosphere. Ambrosini et al. 
(2012) reported Burkholderia strains from sunflower plants to be predominant in 
solubilization of Ca3(PO4)2. de Souza et al. (2013) identified Burkholderia, Cedecea, 
Cronobacter, Enterobacter, Pantoea, and Pseudomonas possessing capability to 
solubilize tricalcium phosphate from rice. Yadav and Pandey (2018) isolated 
P-solubilizers including Bacillus sp., Streptomyces sp., and Cronobacter sp. from 
the rhizospheric region of tomato.

2.5.10	 �Siderophore Production

Iron is an essential growth cofactor for living organisms. Iron exists in two states in 
aqueous solution which are Fe2+ and Fe3+, but Fe3+ forms cannot be utilized by the 
plants as well as the microorganisms as they form oxides and hydroxides which are 
insoluble and in turn limit the bioavailability (Desai and Archana 2011; Zuo and 
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Zhang 2011). When aerobic or facultative anaerobes grow in iron-deficient environ-
ment, they start synthesizing Fe3+ ion-specific chelating agents which are referred to 
as the siderophores which are basically peptide molecules and contain side chains 
as well as the functional groups which provide high affinity set of ligands to coordi-
nate the ferric ions (Crosa and Walsh 2002). On the basis of these iron-coordinating 
functional groups, structural features, and types of ligands, siderophores have been 
divided into four categories which are carboxylate, hydroxamates, phenol catecho-
lates, and pyoverdine (Crowley 2006). These bind Fe3+ ions and make siderophore-
ferric complex to be transported into the cell. Siderophores mean the iron (Fe3+) 
carrier. Roots can take up iron from the siderophore-Fe complex by different ways 
which include (a) chelate degradation, (b) direct uptake of the siderophore-Fe com-
plex, and (c) ligand exchange reaction. Azotobacter, Pseudomonas, Mycobacterium, 
Rhodococcus, and many enterobacteria are known to produce peptidic siderophores, 
whereas Agrobacterium, several actinomycetes, Burkholderia, Paracoccus, and 
Rhizobia produce siderophores based on di- and tri-aminoalkane skeletons (Scavino 
and Pedraza 2013). Acinetobacter, Arthrobacter, Bacillus, Marinobacter, 
Ochrobactrum, Ralstonia, Rhizobium, Staphylococcus, Synechococcus, and Vibrio 
produce citric acid-based siderophores (Budzikiewicz 2010).

Arora et al. (2001) isolated Rhizobium meliloti from medicinal plant, Mucuna 
pruriens, which produced siderophores which acted as biocontrol agent against 
Macrophomina phaseolina and also proved an efficient plant growth promoter that 
was evidenced by increased seedling biomass and fresh nodule weight over unin-
oculated controls. Sharma and Johri (2003) reported the significant increase in ger-
mination percentage and plant growth in maize with inoculation of seeds with 
siderophore-producing Pseudomonas sp. strains GRP3A and PRS. The maximum 
shoot, root length, and dry weight were observed with 10 μM Fe (III) along with 
bacterial inoculants.

The siderophore production is one of the most common characteristic features 
of the isolates associated with sunflower (Ambrosini et al. 2012) and rice (de Souza 
et al. 2013). The major function of the siderophores is to obtain the iron from the 
insoluble hydroxides or the oxides, but they can also extract iron from various 
soluble or insoluble compounds, such as the ferric citrate, ferric phosphate, ferri-
tin, Fe-transferrin, iron bound to the sugars, plant flavone pigments, and glyco-
sides, or even from the artificial chelators such as EDTA and nitrilotriacetate by Fe 
ligand exchange reactions. In fact, siderophores are not only directly involved in 
the solubilization of iron but indirectly also make iron available to both plants and 
microbes.

2.5.11	 �Biocontrol

Recently, the use of PGPR as biocontrol agents is on rise for the control of bacterial, 
viral, and fungal plant diseases. Treatment of the tomato seeds with PGPR strains 
Bacillus subtilis and Bacillus amyloliquefaciens protected the plants against the 
bacterial canker (Girish and Umesha 2005). Pseudomonas corrugata, Bacillus 
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megaterium, and Flavobacterium sp. efficiently controlled Phytophthora capsici 
and Phytophthora blight of pepper (Akgül and Mirik 2008) (Sang et al. 2008). In 
the study of Kirankumar et al. (2010), Pseudomonas B-25 has been conferred to 
promote the growth, the yield, as well as the nutrient uptake of the tomato in the 
presence of the tobacco mosaic virus (TMV).

2.5.11.1	 �Antibiosis
The production of the antibiotics by PGPR is one of the most powerful and most 
widely studied mechanisms against the phytopathogens. According to Haas and 
Défago (2005), there are six categories of the antibiotics which are basically related 
to the biocontrol of the root diseases; these include phenazines, phloroglucinols, 
pyoluteorin, pyrrolnitrin, and cyclic lipopeptides; and all of these are diffusible and 
hydrogen cyanide which is basically volatile in nature. Recently, lipopeptide biosur-
factants have been implicated in the biocontrol which are produced by Pseudomonas 
and Bacillus species. These biosurfactants possess a potential positive effect on 
competitive interactions with organisms including bacteria, fungi, oomycetes, pro-
tozoa, nematodes, and plants (Arora et al. 2018; De Bruijn et al. 2007; Raaijmakers 
et al. 2010). There are various other antimicrobial compounds such as oligomycin 
A, kanosamine, zwittermicin A, and xanthobaccin which are produced by Bacillus, 
Streptomyces, and Stenotrophomonas sp. which also prevents the proliferation of 
plant pathogens mostly the fungi. One of the effective and extensively studied anti-
biotics is 2,4-diacetylphloroglucinol (DAPG) which is produced by Pseudomonads, 
an effective and extensively studied antibiotic, causes membrane damage to Pythium 
sp., and is particularly inhibitory to zoospores of this oomycete (de Souza et  al. 
2003). Another compound phenazine, which is also produced by Pseudomonads, 
possesses redox activity and can suppress pathogens of plants such as Fusarium 
oxysporum and Gaeumannomyces graminis (Bloemberg and Lugtenberg 2003).

2.5.11.2	 �Lytic Enzymes
There are a number of enzymes which are produced by plant growth-promoting 
rhizobacterial strains such as chitinases, dehydrogenase, β-glucanase, lipases, phos-
phatases, proteases, etc. (Joshi et al. 2015; Lanteigne et al. 2012). PGPR through the 
activity of these enzymes play an important role in growth promotion mainly by 
protecting the plants from various pathogenic fungi such as Botrytis cinerea, 
Sclerotium rolfsii, Fusarium oxysporum, Phytophthora sp., Rhizoctonia solani, and 
Pythium ultimum (Hayat et  al. 2010; Nadeem et  al. 2013; Yadav et  al. 2016a). 
Someya et al. (2000) studied the chitinolytic and antifungal activities of Serratia 
marcescens against Rhizoctonia solani and Fusarium oxysporum. When the myce-
lia of the fungal pathogens were co-inoculated with the strain, partial swelling in the 
hyphae as well as at the tip, curling of the hyphae, and bursting of the hyphal tip 
were observed. The strains of Paenibacillus and Streptomyces sp. have been reported 
to synthesize β-1,3-glucanase which is responsible for degradation of cell walls of 
pathogenic fungi including Fusarium oxysporum (Compant et al. 2005). Bacillus 
cepacia has been revealed to synthesize β-1,3-glucanase which degrades the cell 
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walls of various soil-borne phytopathogens including Rhizoctonia solani, Pythium 
ultimum, and Sclerotium rolfsii (Compant et al. 2005)

2.6	 �Conclusion and Future Prospects

The use of the plant growth-promoting rhizobacteria in agricultural production sys-
tems started long time ago, and the evidences of their benefits by diverse mecha-
nisms are increasing day by day. Diverse groups of microbes with multifarious plant 
growth-promoting attributes have been identified to date. But, the benefits from 
PGPR still need to be explored more. The better understanding of the bio-inoculants 
in the uptake of the nutrients has to be maximized. Before application of the foreign 
bacteria, proper assessment is required so that the survival of the native bacteria is 
not challenged which can affect the plant growth. In spite of all lengthy research to 
the date, a lot more work is still to be done to open out hidden capabilities of PGPR 
to commercialize them and to make them a proficient technique for sustainable 
agriculture, and for this, proper formulations, strategies, and field trials are essen-
tial. All these strategies will add to sustainable development simultaneously influ-
encing the economic development. Thus, the application of PGPR will surely prove 
a potent tool to reduce the use of chemical fertilizers which is already on rise to 
meet the demands of expanding population.
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Abstract
To manage a soil biodiversity, significant role is played by microbes. In this context, 
free-living soil bacteria/rhizobacteria are beneficial for improving plant growth and 
development commonly termed as plant growth-promoting rhizobacteria (PGPR). 
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Uses of efficient microbes inhabit the roots forming colonies in higher plants acting 
as a pipeline for nutrient supply and provide many beneficial compounds competent 
for boosting plant growth and development. PGPR are well-known plant growth 
promoter (PGP) native of rhizosphere, which is a substantial soil ecological, envi-
ronmental and plant wellness for soil-plant-microbe interaction. Keeping in mind 
the above points, it was felt that they are very useful in horticultural plants. For that, 
this book chapter encompasses the works of various scientists/students/researchers 
and reviewed their work for the awareness and use of PGPR in horticultural crops.

Keywords
Rhizosphere · Environment · Plant growth promotion

3.1	 �Introduction

Agriculture has a major contribution to the share of national income. Nowadays 
population increases, and to feed the ever-growing population, much more effort 
and innovation will be urgently required to increase agricultural production. This 
may also be increase with decrease in loss of productivity to ensure that everybody 
should get nutritious food. Good management practices (GMPs) are needed to 
ensure agricultural production, growth of economy and maintenance and protection 
of biodiversity as well as meet the food necessity of global inflating population. 
Nowadays, world cultivation needs sustainable approach to the fulfilment of our 
future need without affecting present requirement and traditional agricultural prac-
tices (TAPs). It is a challenge to enhance the productivity along with maintaining 
environmental health’s for that educating farmers give special importance of results 
of their present techniques of agriculture and encourage them to GMPs and TAPs. 
Efficient microbes that affect the health of plant called as pathogenic organisms are 
main causes for food and environmental sustainability.

Current synthetic chemicals along with cultural practices are mostly used (Parra 
and Ristaino 2001). If microbes are used along with GMPs, it enhances environ-
ment, economic stability and social importance to ensure long-lasting production of 
natural resources and maintain liveliness. Some of these synthetic products have 
caused manifold threats, i.e. ecosystem pollution and human health toxicity, and 
develop pesticide-resistant pests (Hernández-Castillo et al. 2005). Recently, there 
has been focused on organic and sustainable farming. There is an urgency to use 
organic methods from total dependence on chemicals only. In this setting, the bio-
alternatives/bioagents/biopesticides are to be considered as a feasible choice for 
pest management; many efficient microbes including bacteria, fungi, protozoa and 
algae are already present in the rhizosphere.

Microbes inhabiting the rhizosphere zone can be differentiated according to their 
effects on plants and their interaction with roots and others beneficial effects. The 
agricultural soil influenced plant growth by abiotic and biotic factors. Rhizobacteria 
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not only have beneficial effects in phyllosphere but also possess its positive impact 
on rhizosphere of plant. PGPR will be one of the most widely accepted for manag-
ing diseases in plants of horticulture, forestry and agriculture. PGPR being a signifi-
cant component in rhizospheric biota and when grown in symbiotic with the host 
plants stimulate its growth. Plant growth-enhancing species of bacteria includes 
those in the genera Azospirillum, Pseudomonas, Klebsiella, Azotobacter, 
Alcaligenes, Enterobacter, Burkholderia, Arthrobacter, Serratia and Bacillus.

3.2	 �Role of PGPR

PGPR plays a vital function in improving growth of plant through a diverse system 
of mechanisms. The mode of action of PGPR includes (1) tolerance to abiotic stress, 
(2) nutrient fixation, (3) production of regulators of plant growth, (4) siderophore 
formation and (5) volatile natural compound production and produces some protect-
ing enzymes as ACC deaminase, glucanase and chitinase for elimination diseases of 
plant. Stresses come that affect the growth of plant in many ways, which is a signifi-
cant limitation for long-term crop production. These extremes are classified into 
two groups, biotic stresses and abiotic stresses (Fig. 3.1).

3.2.1	 �Different Ways to Tolerate Abiotic Stress in Plant

There are many reasons responsible for yield loss of horticultural commodities at 
field conditions among which the abiotic stress is of prime importance. However, 
the effectiveness of these abiotic stresses depends upon the intensity of various 
edaphic factors (soil moisture, soil pH, imbalance in nutrition, etc.) and other fac-
tors (Nadeem et al. 2010). The findings of Pishchik et al. (2002) state that PGPR is 
helpful in reducing harmful effects of cadmium pollution on barley due to its capac-
ity of the bacteria to adhere cadmium ions to soil molecule attraction theory, 

Fig. 3.1  Effect of PGPR on horticultural plants

3  Advances in the Application of Plant Growth-Promoting Rhizobacteria…



www.manaraa.com

70

therefore reducing down the available amount of cadmium in soil. However, 
Nautiyal et al. (2008) reported, the bacteria named Bacillus lentimorbus enhanced 
the antioxidant property of the edible parts of lettuce, carrots and spinach which 
leads to improve productivity. Findings of Naveed et al. (2014) reported that PGPR 
on plants grown in stressful abiotic conditions improve water status of leaves, par-
ticularly under stressful drought and salinity. P. aeruginosa isolate reported to 
enhance the growth under drought conditions mung beans (Sarma and Saikia 2014).

3.2.2	 �Soil Nutrients and Relative Plant Uptake

The findings of Choudhary et al. (2011) noted that PGPR facilitates the nutrient fix-
ing due to some or other means and thereby increases the accessibility of concentra-
tion of nutrient in the rhizosphere, preventing them from leaching out. For example, 
nitrogen, which plays important role in formation of proteins and amino acids, is the 
major nutrient for plants. According to Tejera et al. (2005), there are very few free-
living nitrogen-fixing organisms. The most famous one is Azospirillum which is 
often reported to be concomitant with cereals in temperate regions and reported to 
improvise the yield of rice.

3.2.3	 �Plant Hormones

The plant growth regulators (PGR), synthetic substances and phyto-stimulator are 
terms for promotion of growth by PGPR (Table 3.1). These efficient microbes have 
the ability to produce GA, IAA, ethylene and cytokinins (Lugtenberg et al. 2002; 
Somers et  al. 2004). Auxin is an essential molecule for plant growth (Tanimoto 
2005). PGPR which degrades ACC in the rhizosphere shortens the weakening cycle 
reconstructing healthy root system withstanding stress of environment. Glick (2014) 
illustrates that plant growth-promoting bacteria yields ACC deaminase and synthe-
size IAA promotes plant growth (Ahmad et al. 2013).

Table 3.1  Examples of different phytohormone produced by PGPR

Phytohormones PGPR
Indole-3-acetic acid 
(IAA)

Herbaspirillum seropedicae, Aeromonas veronii, Acetobacter 
diazotrophicus, Azospirillum brasilense, Enterobacter cloacae, 
Agrobacterium spp., Enterobacter spp., Alcaligenes piechaudii, 
Bradyrhizobium spp., Rhizobium leguminosarum, Comamonas 
acidovorans

Cytokinin Rhizobium leguminosarum, Pseudomonas fluorescens, Paenibacillus 
polymyxa

Zeatin and ethylene Azospirillum spp.
Gibberellic acid 
(GA3)

Azospirillum brasilense, Bacillus spp., Azospirillum lipoferum

Abscisic acid (ABA)
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3.2.4	 �Production of Siderophores

PGPRs secrete extracellular metabolites termed as siderophores. It has protein con-
taining iron (Fe) compounds associated in the procedure of chelating ferric iron 
Fe3+, and when Fe is finite, microbes of siderophores furnish iron by employing 
siderophores secreted by PGPR.  Rhizobacteria have the capability of cross-
utilization; few are skilled in utilization of siderophores within similar genus (Khan 
et al. 2014).

3.2.5	 �Volatile Organic Compound Production

Efficient PGPR produce volatile organic compounds (VOCs) which are involved in 
uplifting growth of plant and induced systemic resistance (ISR) against pathogens. 
Bacterial/rhizobacterial species from several genera include Arthrobacter, Bacillus, 
Pseudomonas, Stenotrophomonas and Serratia. VOCs produced by Bacillus are 
best known and are accountable for noticeable enhancement in plant growth (Ryu 
et al. 2003).

3.3	 �Role as Biofertilizer

Biofertilizer is an essential part of organic farming in modern era. It is of significance 
for general agricultural production and economy on global scale. Biofertilizers are 
the products containing microbes in living state; if they incorporated in soil, plant 
surfaces, or seeds colonize the rhizosphere or plant’s interior, by uplifting the pri-
mary nutrients accessibility promoting plant growth. A mixture of latent cells 
improves phosphate-solubilizing, nitrogen-fixing or cellulolytic microbes applicable 
to seed, soil, composting areas or roots improving a number of symbiotic microbes 
and uplifting the accessibility of nutrients which can be integrated and absorbed by 
the plants (Mishra et al. 2014). PGPM is classified in three major groups: (1) PGPR, 
(2) arbuscular mycorrhizal fungi (AMF) and (3) N-fixing rhizobia. PGPR is used 
globally as biofertilizers and biocontrol (Francis et al. 2010). PGPR in biofertilizers 
are beneficial in forming a proper rhizosphere for growth plant and altering impor-
tant nutrients biologically, for example, increasing the inhibiting pathogen growth 
and enhancing nutrient availability. The survival rates of microbes enhanced soil 
fertility, and improved antagonistic biocontrol effects are due to high accessibility of 
nutrients (Yang et al. 2011). PGPR act as biofertilizers when used as a plant enrich-
ment and nourishment source replenishing the nutrient cycle.

3.4	 �Application of PGPR in Horticulture

The PGPR is used for processes as promotion, propagation and biocontrol of growth 
and development in horticulture (Table 3.2).

3  Advances in the Application of Plant Growth-Promoting Rhizobacteria…



www.manaraa.com

72

3.4.1	 �Effects on Vegetative Propagation

The abundant of fruit species are heterozygous and majorities are self-sterile, result-
ing almost all commercially yielded fruit cultivars do not form true-to-type if propa-
gated from seeds. Therefore, generative (seedling) methods of propagation are of no 
value. PGPR inoculation helps in propagation. Many bacteria in the genera of 
Bacillus, Agrobacterium, Pseudomonas, Streptomyces and Alcali induce formation 
of root in stem cuttings (Bassil et al. 1991; Rinallo et al. 1999). These bacteria gen-
erate IAA (Goto 1990). The rooting of bacteria-incorporated cuttings can be has-
tened by application of exogenous indole-3-butyric acid (IBA) (Falasca et al. 2000). 
Strawberries vastly multiply asexually via runners desiring efficient production, and 
quality of plant has a noticeable impact on growth and yield.

3.4.2	 �PGPR Used for Disease Management

PGPR improvises development and growth by indirect or direct effect techniques. 
Earlier, PGPR treatments were given to roots and, nowadays, sprayed to aerial part 
of the plant. Plant diseases in association with crop plants were managed by syn-
thetic pesticides to enhance production of food. Regular use of pesticides has 
resulted in the outbreak of fungicide-resistant pathogens and environmental pollu-
tion. PGPR application either as single-strain or strain-mixture-based formulations 
stopped spreading of disease and increased yield and growth (Table 3.3).

Table 3.2  Plant growth-promoting rhizobacteria used in various horticultural plants and its ben-
eficial effect

Rhizobium/arbuscular 
mycorrhizal strain Effect

Horticultural 
plants References

G. mosseae Growth Tomato Gamalero et al. 
(2004)

R. leguminosarum Root length, shoot height 
and dry weight

Pea Kumar et al. 
(2001)

R. tropici Growth Field bean Camacho et al. 
(2001)

Rhizobium Siderophore production, 
protein production

Pepper, tomato, 
lettuce, carrot

Garcia-Fraile 
et al. (2012)

Sphingomonas Plant height, gibberellin 
synthesis

Tomato Khan et al. 
(2014)

Agrobacterium Root inoculation increased 
fruit yield

Strawberry Ipek et al. 
(2011)

B. subtilis Enhanced diameter of trunk Apple Utkhede and Li 
(1989)

P. fluorescens Decreased bacteria 
population and freeze 
injury + INA

Pear Lindow et al. 
(1996)
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Table 3.3  Use of PGPR in disease management of horticultural crop

PGPR Crop Disease
Actinoplanes spp. Beetroot Pythium ultimum
Pseudomonas 
fluorescens

Banana Bunchy top virus, Panama wilt (Fusarium oxysporum 
f. spp. Cubense)

Mulberry Leaf spot
Mango Anthracnose (Colletotrichum gloeosporioides)
Apple Grey mould (Botrytis cinerea)
Pear Fire blight (Erwinia amylovora)
Strawberry Grey mould (B. cinerea)
Potato Bact. wilt, Ralstonia solanacearum, soft rot (Erwinia 

carotovora)
Tomato Cucumber mosaic virus, wilt (F. oxysporum f. spp. 

Lycopersici), bact. wilt (R. solanacearum)
Brinjal Blight (Pythium vexans), root rot (Rhizoctonia solani)
Chilli Powdery mildew (Leveillula taurica), fruit rot and 

dieback (Colletotrichum capsici), wilt (F. oxysporum)
Pea Damping off (P. ultimum), wilt (F. oxysporum f. spp. 

Pisi), root rot (Aphanomyces euteiches)
Onion Tip blight (Alternaria spp.)
Radish Wilt (F. oxysporum f. spp. raphani)
Cucumber Wilt (F. oxysporum), damping off (Pythium 

aphanidermatum), anthracnose (Colletotrichum 
orbiculare), angular leaf spot (Pseudomonas syringae 
pv. Lachrymans)

Carnation Wilt (F. oxysporum f. spp. dianthi)
P. syringae Apple Blue mould (Penicillium expansum), grey mould (B. 

cinerea)
Peach Brown rot (Monilinia fructicola)

P. aeruginosa Tomato Damping off (P. aphanidermatum)
French 
bean

B. cinerea

P. putida Tomato Wilt (F. oxysporum f. sp. lycopersici)
Pea Damping off (P. ultimum)

P. corrugate Cucumber Damping off (P. aphanidermatum)
P. chlororaphis Tomato Damping off (F. oxysporum f. spp. radicis-lycopersici)
Bacillus subtilis Apple Blue mould (P. expansum),grey mould (B. cinerea)

Peach Brown rot (M. fructicola)
Potato Bact. wilt (R. solanacearum), scab (Streptomyces 

scabies)
Tomato Bacterial spot and late blight, wilt (F. oxysporum f.spp. 

Lycopersici), damping off (P. aphanidermatum)
Brinjal Collar rot (S. sclerotiorum)
French 
bean

Root rot (R. solani)

Lettuce Root rot (P. ultimum)

(continued)
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3.4.3	 �Plant Protection from Insects

Now bio-management is needed for various pests like viral, insect, phytoplasma, 
bacterial, nematode, and fungal diseases of horticultural crops, viz. vegetables, 
fruits, spice, plantation, tuber crops. No doubt synthetic pesticides were effective 
and help in achieving the higher productivity. Nowadays, pressures on farmers to 
reduce and eradicate the use of chemicals in fruits and vegetable to reduce the 
effects of chemicals on humans because they are consumed afresh. So the problems 
were more and more severe in the coming days; this concern will encourage for bet-
ter alternatives which are eco-friendly and cheaper than synthetic pesticides. For 
that PGPR is one of the best-known enterprises to maintain soil and crop health 
through a variety of techniques.

3.4.4	 �Stress Management

Stresses (abiotic and biotic) are major cork to horticultural crop yield. Drought and 
salinity is one of the important environmental elements of abiotic stress, checking 
the productivity and growth of various crops including fruit, vegetables and flowers, 
in semiarid and arid areas. It was estimated that >50% average production loss 
worldwide was due to abiotic stress; the requirement of vegetables is enhancing 
daily for balance nutrition for exponentially increasing population globally that also 

Table 3.3  (continued)

PGPR Crop Disease
B. pumilus Strawberry Grey mould (B. cinerea)

Tomato Tomato mottle virus, wilt (F. oxysporum f. spp. 
lycopersici)

B. coagulans Mango Bacterial canker (Xanthomonas campestris pv. 
Mangiferaeindicae)

B. amyloliquefaciens Tomato Tomato mottle virus
Enterobacter 
aerogenes

Apple Collar rot (Phytophthora cactorum)

E. cloacae Cucumber Damping off (P. aphanidermatum)
Lettuce Root rot (P. ultimum)

Erwinia herbicola Apple Erwinia amylovora
Streptomyces 
griseoviridis

Cauliflower Blight (Alternaria brassicicola)

Narcissus F. oxysporum f. spp. narcissi
Serratia marcescens Cucumber R. solani, wilt (F. oxysporum f. spp. cucumerinum)
Agrobacterium 
radiobacter K84, 
K1026

Peach Crown gall (Agrobacterium tumefaciens)

Avirulent Ralstonia 
solanacearum

Ginger Bacterial wilt (R. solanacearum)
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pushes the vegetable and fruit production in the present and/or in the future. 
Enhanced means of the production of important vegetables like cucumber, onion, 
potato, carrot, eggplant, cabbage, cauliflower, lettuce, pepper, spinach, etc. has been 
developed by many scientists (Shivakumar and Bhaktavatchalu 2017).

3.5	 �Future Prospective and Conclusion

It was found that almost all the PGPR significantly increased growth and develop-
ment of plant like plant height, volume and root length and dry matter production in 
many horticultural crop plants. There is an urgent need to develop stable microbial 
formulations for sustainable agricultural production system which replaces chemi-
cals use in crops. PGPR has the capacity to replace the chemical fertilizers and 
pesticides from horticultural as well as agricultural use. PGPR applications may 
also enhance input efficiency for fertilizer especially under organic and sustainable 
growing conditions. Besides, these PGPR are used as safeguard to biological 
resources as well as natural environments. It is also an integral part of IPM-integrated 
pest management. It would be felt that in coming era, study needed on the action 
mechanisms of microbes for easy to combine different strains, bacteria with fungi 
or bacteria with bacteria to control pathogens in broader spectrum. Use of biotech-
nology can also be a very useful tool to improve qualities of strains by transgenic 
strain creation combining multiple action mechanisms.
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Abstract
Agriculture is an important factor for improving economy of the country. 
Productivity of the crop is drastically reduced due to the incidence of biotic fac-
tors such as pests, diseases and nematodes as their infestation causes huge eco-
nomic loss to the farmers. Biocontrol agents are excellent candidates for the 
reduction of biotic stresses and effective alternative to the chemicals as chemi-
cals cause a huge menace to the environment. Among biocontrol agents, plant 
growth-promoting rhizobacteria (PGPR) is important group of root-colonizing 
bacteria which help in the promotion of plant growth in addition to the suppression 
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of pests and diseases. Pseudomonas is an important candidate belonging to 
PGPR which is a gram-negative and rod-shaped bacteria. Efficacy of various 
strains of these bacteria in enhancing the plant growth and suppression of pest 
and diseases were well proved. This chapter deals with the pioneering and recent 
works of Pseudomonas in the management of pests, diseases and nematodes. 
This review will help in the research work that involves Pseudomonas as a poten-
tial bioagent in the management of pests, diseases and nematodes.

Keywords
Pseudomonas spp. · Insect pests · Diseases · Nematodes · Biomanagement

4.1	 �Introduction

Agriculture is an inevitable source of livelihood for the people living all over the 
world. It increases economy of the country by providing raw materials to 
nonagricultural-based sectors, export of agricultural products and providing 
employment to vast uneducated people. Owing to increase in the population of 
underdeveloped and developing countries, demand for the food supply is increasing 
in a faster pace. With increased production of agriculture crops, increased level of 
infestations by the insects, diseases and nematodes were observed. These biotic fac-
tors reduce the crop yield both quantitatively and qualitatively. Nowadays, applica-
tion of chemicals against pests and diseases is restricted due to its contamination in 
the soil and environment. Microbial bioagents are promising approach to address 
the problems with soil dwelling insects and diseases. Effectiveness of microbial 
agents increases in the subterranean region, since it provides more favourable envi-
ronment for the microbes in contrast to aboveground habitats.

Biological control is an eco-friendly method to control insects, pathogens and 
nematodes. It involves the application of certain other living organisms like 
microbes, predators and parasitoides or their products to control pests and diseases. 
It keeps the population of pests and diseases below economic injury levels and does 
not produce any toxic problem to the soil. Efficacy of many microbial biocontrol 
agents were proved against pests, diseases and nematodes (Khan 2007). Plant 
growth-promoting rhizobacteria (PGPR) are one among the microbial bioagents 
widely being used for the suppression of pests and diseases (Khan et  al. 2009; 
Upadhyay and Srivastava 2010). Besides, they trigger the latent defence mechanism 
in the plants against biotic stresses (Ryals et al. 1996). Even though the level of 
control provided by the rhizobacteria could not be compared with the chemicals, 
they offer an effective protection to the plants against the incidence of biotic 
problems.

PGPR are group of free-living bacteria that lives in the rhizosphere and colo-
nize the root system aggressively. They are known for its plant growth promotion 
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and biocontrol potential against insects, diseases and nematodes. Often, some of 
the rhizobacteria are feared as human or plant pathogens such as Pseudomonas 
aeruginosa/Pseudomonas syringae, some other species of Pseudomonas group 
are well known for their biocontrol potential. Among them, Pseudomonas fluore-
scens is one of the most extensively used rhizobacteria which received particular 
attention due to the root-colonizing ability and capacity to produce plant growth 
regulators (Khakipour et al. 2008), enzymes and metabolites (Raaijmakers et al. 
2010). Pseudomonas is an aerobic, gram-negative bacterium that can be mass 
produced in vitro. These bacteria mainly help in plant growth promotion by the 
secretion of growth hormones like auxins, gibberellins and cytokinins 
(Vidhyasekharan 1998). Besides, they help in the solubilization of minerals and 
nutrients in the soil to get them easily absorbed by the plant roots (Berg and 
Smalla 2009; Khan et al. 2009).

Application of these bioagent brings about the natural suppressiveness to the 
soil. Some of the traits associated with Pseudomonas spp. in enhancing the bio-
control potential against pest, diseases and nematodes includes the fixation of 
atmospheric nitrogen, synthesis of phytohormones, solubilization of minerals, 
synthesis of antibiotics, secretion of iron-binding siderophores, production of sec-
ondary metabolites and enzymes and outcompeting pathogens for nutrients and 
niches. Brief descriptions on the different mechanisms of Pseudomonas were 
listed below:

4.2	 �Plant Growth Promotion (PGP)

It involves various mechanisms like nitrogen fixation; sequestration of iron by the 
production of siderophores; production of phytohormones like auxins, cytokinin 
and gibberellin; and lowering of plant ethylene level (Kavino et al. 2010). Presence 
of regulatory molecule, ACC deaminase, plays a significant role in the plant growth 
promotion. Pseudomonas that produce IAA increase the root surface area which 
enables the plant to access more nutrients from the soil (Barazani and Friedman 
1999). Presences of ACC deaminase (1-aminocyclopropane-1-carboxylate deami-
nase) induce saline resistance in the plants and promote plant growth during the 
stress period (Saravanakumar and Samiyappan 2007).

4.3	 �Production of Siderophores

Pyoverdines, the yellow-green pigments produced by the Pseudomonas, are fluore-
scens under UV light and function as siderophores. Siderophores solubilize iron 
from their surrounding environment and form a ferric-siderophore complex which 
moves by diffusion to colonize the roots to exclude the invasion of deleterious 
microorganisms from the ecological niche (Haas and Defago 2005).
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4.4	 �Production of Antibiotics

Antibiotics are low molecular weight compounds that are deleterious to the growth 
and metabolic activities of other microorganisms. Several strains of Pseudomonas 
spp. were found to produce wide array of antibiotics like 2, 4 diacetylphloroglu-
cinol, hydrogen cyanide, kanosamine, phenazine-1-carboxylic acid, pyoluteorin, 
pyrrolnitrin, pyocyanin and viscosinamide as well as several other uncharacterized 
moieties (Haas and Defago 2005).

4.5	 �Production of Lytic Enzymes

Lytic enzymes, viz. chitinase and ß-1, 3-glucanase, exhibit the biocontrol potential 
against plant pathogens and insect pests. They degrade the chitin and glucans in the 
fungal cell wall and associated with the osmotic disruption of the cellular 
membrane.

4.6	 �Induction of Systemic Resistance (ISR)

Induced resistance has been recognized as a vital tool in plant disease management. 
Plants establish multiple defence responses which include physical and chemical 
mechanisms (Pieterse et al. 2009) against the infestation of pests and diseases.

Biocontrol agents induce systemic resistance (ISR) in plants through fortifying 
the physical and mechanical strength of cell wall and by altering the physiological 
and biochemical reaction of the host against the infestation of pathogens. Defence 
reaction mainly occurs due to the accumulation of PR proteins (chitinase, ß-1, 3 
glucanases), chalcone synthase, phenylalanine ammonia lyase, peroxidase, pheno-
lics, callose, lignin and phytoalexins. These lytic enzymes help in the mycoparasit-
ism to degrade the pathogen cell wall. The enzymes like chitinases and ß-1, 3 
glucanases lyse the host cell wall and lead to the leakage of protoplasmic cell con-
tents which can be used as a food source for the multiplication of antagonistic 
organisms.

4.7	 �Pseudomonas in the Management of Pests, Diseases 
and Nematodes

Detailed reports on the efficacy of Pseudomonas spp. against pests, diseases and 
nematodes were given below.
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4.7.1	 �Management of Insect Pests Through Pseudomonas spp.

Pest control by the microbial bioagents received much attention towards the research 
side after the discovery of insecticidal toxins from the microorganisms like 
Pseudomonas spp. and Bacillus spp. Secondary metabolites produced by these 
microorganisms were associated with the insecticidal properties. Several strains of 
P. fluorescens were reported to exhibit insecticidal activity towards the agriculture 
pests such as aphids (Hashimoto 2002), phytophagous ladybird beetles (Otsu et al. 
2004) and termites (Devi and Kothamasi 2009). In the same vein, combined formu-
lation of two P. fluorescens strains was demonstrated to reduce the incidence of 
herbivorous insect, rice leaf roller (Cnaphalocrocis medinalis) and phytopathogenic 
fungus (Rhizoctonia solani) in rice under greenhouse and field conditions (Commare 
et al. 2002; Karthiba et al. 2010). Further, a number of P. fluorescens strains were 
reported to be effective against the common fruit fly, Drosophila melanogaster, and 
other widely used laboratory insect (De Lima Pimenta et  al. 2003; Olcott et  al. 
2010). Protein extracts (Prabakaran et al. 2002) or secondary metabolites like HCN 
(Devi and Kothamasi 2009), lipopeptides viscosin (Hashimoto 2002) and orfamide 
(Jang et al. 2013) obtained from various strains of P. fluorescens were recorded with 
insecticidal properties. The following table describes in brief about the insecticidal 
potential of different strains of Pseudomonas against wide array of insect pests 
(Table 4.1).

4.7.1.1	 �Artificial Diet (D) or Plant Leaves (L)
P. aeruginosa is one of the commonly isolated bacteria from the insects. Pathogenicity 
of the bacterium is correlated with the production of proteolytic enzymes. Production 
of protease enzyme causes degenerative changes in haemocytes and digests certain 
specific insect haemolymph proteins (Lysenko and Kucera 1971). P. maltophilia 
retarded the growth of corn earworm, Helicoverpa zea, which reflected in the reduc-
tion of adult emergence of the pest (Bong and Sikorowski 1991). Application of P. 
gladioli affected the relative growth, consumption and digestibility of the feed by 
Helicoverpa armigera in cotton (Qingwen et al. 1998). Different strains of P. fluo-
rescens, viz. Pf1, TDK 1 and PY 15, rendered notable reduction in the leaf folder 
damage in rice plants. Besides, their application increased natural enemy population 
(Saravanakumar et al. 2007). Tomato leaves treated with defence inducer, jasmonic 
acid (JA), along with P. aeruginosa recorded maximum larval mortality of 
Spodoptera litura under pot culture condition. It also recorded significant reduction 
of pupation rate, adult emergence and adult longevity of the pest. Activity of pro-
teinase inhibitor, polyphenol oxidase (PPO) and lipoxygenase molecules was pro-
moted by JA treatment (Melvin and Muthukumaran 2008) which partially 
contributed for the suppression of pest population.

In vitro, different Pseudomonas species and their metabolites exhibited insecti-
cidal effect on various insect pests. Entomopathogenic activity of different 
Pseudomonas species was proved on the larvae and adults of alder leaf beetle, 
Agelastica alni (Sezen et  al. 2004), and on the larvae of Melolontha melolontha 
(Sezen et al. 2007), Phyllocnistis citrella (Meca et al. 2009) and Locusta migratoria 
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(Mohandkaci et al. 2015). Formation of morphological defects in widely used labo-
ratory insects was evident with the application of P. fluorescens (Flugge) strains 
(Pimenta et al. 2003). Application of P. alcaligenes caused septicaemia in the grubs 
of rhinoceros beetle under stress conditions (Gopal et al. 2002). P. aeruginosa iso-
lated from dead grubs of epilachna beetle, Henosepilachna vigintioctopunctata, 
caused mortality of the grubs (Aswathy 2015). Haemocoelic injection of low dose 
of P. fluorescens CHA0 or Pf-5 was observed to induce mortal effects on the larvae 
of tobacco hornworm, Manduca sexta, and the greater wax moth, Galleria mel-
lonella (Maria et al. 2008). P. aeruginosa and P. putida were reported to cause dis-
ease in spider mite, Tetranychus urticae. P. entomophila exhibited virulence against 
Drosophila melanogaster due to strong haemolytic activity exhibited due to the 
production of enzymes such as lipases, chitinases and/or hydrolases (Vodovar et al. 
2006). Bacterial chitinases kill the insects by hydrolysing the chitinous exoskeleton 
of the insects (Kramer and Muthukrishnan 1997).

Table 4.1  Insecticidal effect of different strains of Pseudomonas spp.

Strain and 
species Target insect

Mode of 
application References

Pseudomonas protegens
CHA0 Galleria mellonella, Manduca 

sexta
Injection Pechy-Tarr et al. (2008, 

2013)
Spodoptera littoralis Feeding (D, L) Ruffner et al. (2013)
Heliothis virescens Feeding (L) Ruffner et al. (2013)
Plutella xylostella Contact (live 

cells)
Devi and Kothamasi 
(2009)Odontotermes obesus

F6 Myzus persicae Contact (purified 
metabolite)

Jang et al. (2013)

Pseudomonas chlororaphis
30–84 G. mellonella Injection Ruffner (2013)
PCL1391 S. littoralis Feeding (D, L) Ruffner et al. (2013)

H. virescens, P. xylostella Feeding (L)
AH1, FP7 
and Pf1

C. medinalis Feeding (L) Commare et al. (2002)

HS870031 Myzus persicae, Aphis 
gossypii, Aulacorthum solani

Contact (purified 
metabolite)

Hashimoto (2002)

KPM-018P Epilachna vigintioctopunctata Feeding (oral 
injection, L)

Otsu et al. (2004)

Pseudomonas entomophila
L48 D. melanogaster Feeding (D) Vallet-Gely et al. (2010) 

and Opota et al. (2011)
Pseudomonas syringae
B728a Acyrthosiphon pisum Feeding (D, L) Stavrinides et al. (2009)
Pseudomonas aeruginosa
PA14 G. mellonella Injection Miyata et al. (2003)
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4.7.2	 �Management of Diseases Through Pseudomonas spp.

Application of P. fluorescens inhibited or displaced the soilborne pathogens at the 
root-soil interface in several the annual crops like cotton, potato, tobacco, flax, 
cucumber, sunflower, wheat and rice (Ganesan and Gnanamanickam 1987; Weller 
et  al. 2002) and in the pulse crops like chickpea, pigeon pea and black gram 
(Jayashree et  al. 2000). Incidence of anthracnose disease in mango got reduced, 
when P. fluorescens strain, FP7, was applied through foliar spray (Vivekananthan 
et al. 2004). Different strains of Pseudomonas, viz. Pf1, TDK1 and PY15, when 
applied combinedly, exhibited more effect in the reduction of sheath rot disease in 
rice under glasshouse and field conditions compared to their individual application 
(Saravanakumar et al. 2009). Similarly, chitin-based bioformulation of P. fluores-
cens enhanced the control against collar rot disease in groundnut (Senthilraja et al. 
2010).

Enhanced resistance in the retardation of Colletotrichum musae infestation in the 
banana plants was recorded when the plants were treated with water in oil-based 
bioformulation of P. fluorescens (FP7) (Faisal et al. 2014). Even though the efficacy 
of Pseudomonas spp. has been proved against wide range of crops, their varied 
efficacy and consistency are still needed to be studied under complex environmental 
conditions. Application of fluorescent pseudomonads strengthened the cell wall 
structure of the plants to restrict invasion of the pathogens in the plant tissue (Chen 
et al. 2000). Induction of defence mechanism by P. fluorescens is the primary char-
acter of the bacteria against the diseases which was well observed in the P. fluores-
cens strain, Pf1, against the infestation of F. oxysporum f. sp. lycopersici in tomato 
(Manikandan and Raguchander 2014).

Antibiotic compounds produced by Pseudomonas have immense effect on the 
management of diseases. Production of siderophores by the bacteria plays a major 
role in disease  management.  Partially purified siderophore obtained from 
Pseudomonas strain, JAS-25, completely inhibited the spores of F. oxysporum f. sp. 
ciceri, F. udum and A. niger which completely degraded the mycelial hyphae of the 
phytopathogens (Sulochana et al. 2012). In a similar vein, hydrogen cyanide (HCN) 
obtained from the Pseudomonas strains exhibited bacteriostatic and antifungal 
action against phytopathogenic fungi (Alexandra et al. 2014). HCN obtained from 
P. aeruginosa (LES4) suppressed F. oxysporum f. sp. radicis-lycopersici in tomato 
(Sandeep Kumar et al. 2009). Cyanide producing pseudomonad, EA105, collected 
from the rice soil, effectively inhibited the growth and appressoria formation of M. 
oryzae (Spence et al. 2014).

In vitro, different strains of P. fluorescens suppressed the growth of fungus, by 
the production of one or more antifungal antibiotics (Whipps 2001). Antibacterial 
activity of DAPG/HCN produced by Pseudomonas sp. (LBUM 300) was recorded 
against bacterial canker of tomato (Lanteigne et al. 2012). Similarly, phenazine-1-
carboxylic acid (PCA) obtained from Pseudomonas sp. (LBUM223) exhibited con-
trol against Streptomyces scabies (Arseneault et al. 2013).

Combined application of antibiotics obtained from the bioagents exerted greater 
effect over its individual inoculation. This concept was evident in the study 
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conducted against R. solani and C. gloeosporioides wherein production of the com-
pounds, viz. phenazine-1-carboxylic acid, 2, 4 diacetylphloroglucinol and pyoluteo-
rin by P. aeruginosa (FP6), exerted antifungal activity against those pathogens 
(Bakthavatchalu et al. 2013). Likewise, chitinase production from the P. fluorescens 
was recorded to induce antifungal activity against Alternaria alternata, A. brassici-
cola and A. brassicaceae (Ramyasmruthi et al. 2012).

4.7.3	 �Management of Nematodes Through Pseudomonas spp.

Plant-parasitic nematodes are microscopic organisms which occupy a diverse habi-
tat on the earth. They are mostly subterranean in nature and affect the plant root 
system which deteriorates them. Mechanical damage caused by the nematodes 
paves way for the easy entry of secondary bacterial and fungal pathogens into the 
plants and results in disease complex which ultimately leads to death of the plants. 
Hence, disease complex should be taken into consideration for the development of 
effective management practices. The antibiotic, 2, 4 diacetylphloroglucinol (DAPG), 
produced by the Pseudomonas spp. reduced the mobility of nematode juveniles 
(Cronin et al. 1997) and induced systemic resistance in the plants by the synthesis 
and accumulation of peroxidase, chitinase and glucanase in the plant root system. 
Endophytic bacteria colonize the same root tissues where sedentary plant-parasitic 
nematodes feed. This made the bacteria, an excellent candidate, to work against 
nematodes. Production of siderophores (Siddiqui and Ehteshamul-Haque 2001), 
phenazine (Toohey et al. 1965), hydrogen cyanide (Voisard et al. 1989), ammonia 
(Gaur 1990) and pyrrolnitrin (Burkhead and Geoghegan 1994) by the bacteria con-
tributed for the suppression of plant-parasitic nematodes (Khan 2007).

These secondary metabolic compounds suppressed nematode reproduction and 
survival, besides killing the nematodes directly by causing paralysis and convulsive 
movements (Siddiqui and Mahmood 1999). Production of phytohormones and cell 
wall lytic enzymes and increased activity of defence enzymes like PO, PPO, PAL 
and phenol are the major contributing factor of rhizobacteria that work against nem-
atodes. P. fluorescens (Pf1) was adjudged as the best inducers of defence enzymes, 
chitinase and peroxidase, which is crucial for the induction of systemic resistance 
(Nandakumar et al. 2001) against nematode attack (Anita and Rajendran 2012).

Root-knot nematodes (Meloidogyne spp.) are the important group of sedentary 
endoparasites having a wide host range and cause serious damage to the solana-
ceous crops (Anamika et al. 2011; Sikora and Fernandez 2005). Second-stage juve-
niles (J2) of Meloidogyne spp. infect the plant roots and migrate to the vascular 
cylinder where it induces severe root galls (Karssen and Moens 2006). Even though 
the characteristic symptoms of the nematode occur belowground, in the aboveg-
round, their infestation reflected in stunted growth, wilting and poor fruit yield.

Reduction in the multiplication of M. incognita with the application of P. fluo-
rescens has been evident in many crops like tomato (Sankari Meena et al. 2002; 
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Hanna et  al. 1999; Jothi et  al. 2003), chickpea (Khan et  al. 2001), turmeric 
(Srinivasan et al. 2001), banana, maize (Ashoub and Amara 2010; Siddiqui et al. 
2007; Jonathan et  al. 2006), chilli (Thiyagarajan and Kuppusamy 2014), mung 
bean (Khan et al. 2016) and tobacco (Khan and Haque 2011). P. aeruginosa (Rao 
1990), P. stutzeri (Khan and Tarannum 1999) and P. fluorescens (Khan and Akram 
2000) reduced the severity of root galls caused by M. incognita/M. javanica in 
various crops tested under controlled (pot culture) environment conditions. 
Reduction in the nematodes might be due to the induction of systemic resistance 
(Siddiqui and Shaukat 2003). Similarly, P. putida played a significant role in the 
reduction of M. incognita in okra (Rao et al. 2017) and pea (Akhtar and Panwar 
2012; Siddiqui and Aakhtar 2008). The same bacteria recorded inhibitory effect on 
M. javanica in lentil (Siddiqui et al. 2007).

The antibiotic compound, 2, 4 diacetylphloroglucinol (DAPG), produced by P. 
fluorescens recorded to reduce the mobility of cyst nematode juveniles in potato 
(Cronin et al. 1997). P. putida, when applied along with P. aurantiaca through soil 
application, recorded to reduce the infestation of cyst nematode, Globodera rosto-
chiensis, in potato. Since the expected level of control of cyst nematode could not 
be achieved with these bacteria, their effectiveness can be exploited through inte-
grated control strategies (Trifonova et al. 2014).

Toxic compounds produced by the Pseudomonas spp. enhanced the mortality 
rate of the infective juveniles of Hirschmanniella gracilis infesting rice (Seenivasan 
and Lakshmanan 2001); lesion nematode, Pratylenchus penetrans, infesting banana 
(Senthilkumar et  al. 2008); and M. incognita in  vitro (Rajkumar et  al. 2013; 
El-Hamshary et al. 2004). At very low concentration level (1%), the bacteria brought 
about nearly 77% mortality of root-knot nematode juveniles in vitro at the exposure 
period of 72 hours (Mane and Mhase 2017). This might be due to the presence of 
secondary metabolites in the culture filtrate (Hallamann et al. 2001; Ali et al. 2002).

4.7.4	 �Management of Disease Complex Through Pseudomonas 
spp.

Infestation of nematodes leads to the secondary infection by several soilborne fun-
gal or bacterial pathogens which results in the disease complex in the plants (Taylor 
1990). Several Pseudomonas spp. were identified with the properties to control the 
disease complexes. P. aeruginosa reduced the root-knot nematode (M. javanica) 
and fungal (F. oxysporum, F. solani and Rhizoctonia solani) disease complex in 
tomato (Siddiqui and Haque 2001). P. fluorescens (Pfbv 22 and Pf 1) reduced the 
disease complex caused by root-knot nematode, M. incognita, and wilt-inducing 
fungus, F. oxysporum, in tube rose (Sankari Meena et al. 2016). Combination of P. 
fluorescens with T. viride and P. lilacinum brought about significant reduction of the 
disease complex caused by root-knot nematode, M. incognita, and wilt-inducing 
fungus, F. oxysporum f. sp. conglutinans, in cauliflower (Rajinikanth et al. 2013).
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4.8	 �Compatibility of Pseudomonas with Other Microbial 
Agents/Chemicals

Pseudomonas spp. were compatible with many bioagents/chemicals. Combination 
of Pseudomonas spp. with other bioagents/chemicals brought about significant 
reduction of the pathogen load and nematode population in the plants. Effects of the 
bioagents were enhanced in the combination when compared with their individual 
effect. Application of P. fluorescens in combination with Pochonia chlamydosporia 
as seed treatment enhanced the growth of bell pepper and reduced the nematode 
infestation in the crop (Rao et al. 2004). P. fluorescens along with T. viride effec-
tively reduced M. incognita population in mulberry and improved growth of the 
plant (Muthulakshmi and Devrajan 2015). The abovesaid combination had signifi-
cant effect in the reduction of rhizome rot disease of turmeric (Surajit and Chowdhury 
2008). The same bacteria, when combined with T. harzianum, retarded the growth 
of rice root-knot nematode, M. graminicola (Narasimhamurthy et  al. 2017). 
Interestingly, when botanical product (seed powder of Azadirachta indica) and 
chemical nematicides (carbofuran and bavistin) were added with P. fluorescens and 
T. harzianum, a significant reduction in the disease complex due to M. incognita and 
F. oxysporum in green gram, Vigna radiata cv ML-1108, was noticed (Haseeb et al. 
2005). In the same vein, combination of P. chlororaphis (PA23) and B. subtilis 
(BSCBE4) induced resistance of hot pepper to P. aphanidermatum (Nakkeeran 
et al., 2006).

4.8.1	 �Commercial Formulation of Pseudomonas spp.

Many strains of Pseudomonas species were already being marketed as commercial 
products against wide range of pests, diseases and nematodes. Some of the com-
mercial products available in India are mentioned in the table below (Table 4.2).

4.8.2	 �Enhancement of Shelf Life of Bioagents

Addition of different chemical amendments to the bioformulation enhanced the 
viability of the bioagents in the formulation. Increased viability of P. fluorescens (Pf 
1) in liquid formulation was recorded when the formulation was amended with 
glycerol (10 mM) (Sankari Meena et al. 2014). Reports of Manikandan et al. (2010) 
and Chavan and Kadam (2009) supported the above finding where they recorded 
increased the viability of Pseudomonas spp. and Verticillium lecanii with the addi-
tion of glycerol to the medium. Similarly, addition of ammonium molybdate to the 
bacterial formulation enhanced biocontrol potential of the inoculants and reduced 
the quantity of inoculant required to suppress the root-knot nematode population in 
the soil (Hamid et al. 2003).
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4.9	 �Conclusions

Biocontrol agents are effective alternative to the chemicals to protect the crops from 
the infestation of pests and diseases. Pseudomonas is an important bioagent in the 
group of plant growth-promoting rhizobacteria which gives substantial reduction of 
pest and disease load in the plants, besides triggering the plant growth. Several suc-
cess reports on the Pseudomonas against the biotic stresses of the several agricul-
tural and horticultural crops have been proven worldwide by various authors. Future 
research should be directed to find out more number of effective strains of 
Pseudomonas against pests, diseases and nematodes. This can be achieved by 
improving formulation and application techniques to enhance their mode of action 
to increase their colonization on the root surface. Mechanism of microbial bioagents 
generally involved with the production of antimicrobial compounds, the competi-
tion for nutrients and space and the induction of systemic resistance. Though they 
exert the mechanism of biocontrol against pests, diseases and nematodes, mode of 
action of each bioagents significantly varies with other bioagents. Combined 

Table 4.2  Commercial products of Pseudomonas sp.

Biocontrol agent Product name
Product 
form Manufacturer

Pseudomonas 
fluorescence

Monas Talc K.N. Biosciences Pvt. Ltd., 
Hyderabad, Telangana, India

Pseudomonas 
fluorescence

Ecomonas Talc PJ Margo Pvt. Ltd., Bengaluru, 
Karnataka, India

Pseudomonas 
fluorescence

Bio protector Talc Manidharma Biotech Pvt. Ltd.,
Chennai, Tamil Nadu, India

Pseudomonas 
fluorescence

Pseudomonas 
fluorescence 1% wp

Talc Genuine Fert. and Pest Pvt. Ltd., 
Bengaluru, Karnataka, India

Pseudomonas 
fluorescence

Biowin-PF Talc Bioagri Solutions Pvt. Ltd., 
Hyderabad, Telangana, India

Pseudomonas 
fluorescence

Bas Monas Talc Basarass Biocon India Pvt. Ltd., 
Chennai, Tamil Nadu, India

Pseudomonas 
fluorescence

Gmax Phyton Liquid GreenMax AgroTech, Coimbatore, 
Tamil Nadu, India

Pseudomonas 
fluorescence

Pseudomonas 
fluorescence

Liquid Anand Agro Care, Nashik, 
Maharashtra, India

Pseudomonas 
fluorescence

Pseudomonas 
fluorescence

Liquid Universal Bio-Con Pvt. Ltd., Pune, 
Maharashtra, India

Pseudomonas 
fluorescence

Rotken Liquid Florken Sciences, Nashik, 
Maharashtra, India

Pseudomonas 
fluorescence

Alma Liquid Raven Biotech Inc., Coimbatore, 
Tamil Nadu, India

Pseudomonas 
fluorescence

Florilutions Liquid Agrolutions, Bhopal, Madhya 
Pradesh, India

Pseudomonas 
fluorescence

Pseudo Q Liquid OkBiosystems, Gudiyattam, Tamil 
Nadu, India
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formulation of the bioagents is always better to their individual application as in the 
combined formulation, the bioagents interact synergistically with each other, and 
the combined mode of action of these bioagents will provide a strong resistance to 
the biotic stresses. In such cases, if one bioagent fails, the other one will enhance the 
resistance mechanism of the plants towards the pest and disease incidence.
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Abstract
Rhizosphere is the unique vicinity which acts as a battlefield for soil microflora 
and a source of useful metabolites and nutrients for plants. Plant growth-
promoting rhizobacteria (PGPR) associate with the roots of various plants to 
nourish them through direct and indirect mechanisms. Direct mechanisms of 
PGPR-based plant growth include nutrient acquisition from soil, production of 
various metabolites like phytohormones and siderophores, etc. Indirect 
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mechanisms improve the plant health by controlling various plant pathogens by 
producing antibiotics, hydrolytic enzymes, and 1-aminocyclopropane-1-carbox-
ylic acid (ACC) deaminase activity, induction of systemic resistance, etc. In this 
chapter, the brief introduction about PGPR and their interactions with plant roots 
are presented followed by a detailed insight into the mechanisms utilized by 
PGPR in rhizosphere to boost plant growth. In addition, some factors that affect 
PGPR-plant associations are elaborated. Finally, it has been reviewed that, if 
wisely utilized, PGPR may serve as future prospects to supplement chemical 
fertilizers.

Keywords
PGPR · Mechanisms · Rhizosphere · Plant growth · Health improvement

5.1	 �Introduction

The plant growth-promoting rhizobacteria (PGPR) are agriculturally imperative 
bacteria presented in the rhizosphere. They are the natural companions of plants 
making soil nutrients available and suppressing the growth of phytopathogens 
(Babalola 2010). Kloepper and Schroth (1978) described PGPR as “soil bacteria 
that after incorporating in to seed colonize plants roots and enhance the plant 
growth.” Soil is enriched with microbes including bacteria, which contribute sub-
stantially to its fertility and health (Schoenborn et al. 2004). PGPR enhance plant 
growth and development by utilizing the variety of mechanisms (Singh et al. 2017). 
Direct mechanisms make the bound nutrients available to plants by mobilization or 
solubilization processes, while indirect mechanisms improve plant health by con-
trolling the diseases caused by pathogens (Ahemad and Kibret 2014). These PGPR 
reside in the rhizosphere, which is a hot area of soil in terms of microbial activity 
(Walker et al. 2003). Biological control activity of PGPR is a consequence of pro-
cesses such as competition, antagonism, and siderophore or antibiotic production 
(Anith et al. 2004).

Rhizosphere provides much information about microbial diversity as the 
microbes inhabiting the soil utilize variety of carbon and nitrogen sources (Gray and 
Smith 2005; Jones et al. 2004). Microbes inhabiting the rhizosphere feed on root 
exudates of plant, and, in turn, these microbes improve the nutrients uptake by plant 
roots by providing unavailable nutrients from soil (Lugtenberg and Kamilova 2009). 
Rooting pattern and nutrient supply to plants are affected by the bacterial action 
leading to change in the nature of molecules secreted by roots. Microbes metabolize 
a fraction of these organic molecules in order to fulfill their carbon and nitrogen 
requirements, and consequently, plants utilize some of the microbe-derived mole-
cules for their nourishment (Kang et  al. 2010; Sivasakthi et  al. 2014). Various 
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species of Bacillus, Pseudomonas, Azospirillum, Streptomyces, Serratia, 
Enterobacter, Azotobacter, Arthrobacter, Bradyrhizobium, Flavobacterium, 
Mesorhizobium, Alcaligenes, Burkholderia, Rhodococcus, Klebsiella, etc. have 
been documented to promote plant growth and suppress infectious agents (Ahmad 
et al. 2008; Fernández et al. 2007; Gupta et al. 2017; Shahid et al. 2018).

Moreover, microbial communities of rhizosphere also include various 
Actinomycetes having plant-beneficial role (Bhattacharyya and Jha 2012). Among 
various rhizosphere species, Bacillus and Pseudomonas are well characterized for 
their potential as PGPR (Bottini et al. 2004; Jangu and Sindhu 2011). The utilization 
of beneficial microbes from soil in order to improve crop production depends on 
rhizosphere-competent microbes with phytobeneficial potential (Hynes et al. 2008).

This chapter focuses on the PGPR-plant interaction and a brief summary of the 
basic PGPR-based mechanisms in rhizosphere. Finally, the future prospects of 
PGPR-based plant growth and health are described in detail in order to draw the 
logical conclusions.

5.2	 �Interactions Between PGPR and Plant Roots

The rhizosphere is a battlefield of complex interactions for plants and its microflora 
with (Raaijmakers et  al. 2009). Azospirillum, Rhizobium, Pseudomonas, 
Burkholderia, Bacillus, and Beijerinckia are among those bacterial species that are 
well characterized for their rhizospheric interactions (Berg 2000; Chakraborty et al. 
2009). All PGPR through antibiosis and competition improve plant health indirectly 
by stopping growth and activities of soil-inhabiting pathogens (Badri et al. 2009). 
PGPR have direct beneficial impacts on the health of plants by provoking the sys-
temic resistance against the attack of pathogen or by exposing of plants to PGPR-
oriented compounds (Bhattacharyya and Jha 2012). However, in order to examine 
mechanisms of PGPR-based plant growth, chemistry of rhizosphere, a driving force 
of microbial attraction, is often ignored. To explore the complex interactions 
between plant and PGPR at molecular level and to harness their benefits in agricul-
ture, further studies are required. PGPR interact with plants both extracellularly and 
intracellularly, and huge research insights are required to examine the complexity 
and outcomes of such interactions.

5.3	 �PGPR-Based Plant Growth and Health Improvement 
Mechanisms

PGPR are known to colonize root surfaces (rhizospheric) or inside the tissues of 
roots (endophytes) (Kumar et al. 2015). A detailed sketch of mechanisms adopted 
by PGPR for plant nourishment is presented in Fig. 5.1, and various direct and indi-
rect mechanisms are given below.
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5.3.1	 �Direct Mechanisms

5.3.1.1	 �Nitrogen Fixation
Nitrogen (N2) is an essential plant nutrient, and molecular N2 present in the atmo-
sphere cannot be utilized by plants directly due to the high input of energy for its 
conversion to plant-available form (Santi et al. 2013). The N2 is converted into the 
nitrates and nitrites by fixation process of either symbiotic microbes or free-living 
diazotrophs (Jackson et al. 2008). The molecular N2 is utilized by plants by biologi-
cal nitrogen fixation (BNF), a process of converting N2 to ammonia (NH3) by 
nitrogen-fixing bacteria/rhizobacteria equipped with nitrogenase enzyme system 
(Ahemad and Kibret 2014).

Although Rhizobium and Bradyrhizobium are main genera involved in BNF, sev-
eral Enterobacteriaceae family species are also documented as diazotrophs, mainly 
those isolated from plant rhizosphere. The enteric genera with some representative 
diazotrophs include Citrobacter, Pseudomonas, Klebsiella, Enterobacter, and many 
unidentified species (Hayat et al. 2010). Moreover, other bacterial species having 
nitrogen-fixing activity include Beijerinckia derxii, Azotobacter vinelandii, 
Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas putida, Citrobacter 
freundii, and Pseudomonas fluorescens (Akram et al. 2017; Kashyap et al. 2017; 
Kumar et al. 2018).

5.3.1.2	 �Phosphate Solubilization
Phosphorous (P) is one of the essential nutrients for plants because its shortage 
restricts crop production up to a dangerous level. Tropical and subtropical soils are 

Fig. 5.1  Mechanisms of PGPR-based plant growth and health improvement
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considered P-deficient due to their high acidity (Kamilova et al. 2006). Phosphorus 
is present in soils in huge amounts both in organic and inorganic form. Thus, in most 
cases, there is no need of exogenous application of P if already available P pool is 
made available to plants. Various microbes solubilize inorganic form of phosphates 
in soil such as rock phosphate (RP). Mineral phosphate-solubilizing bacterial (PSB) 
species such as B. megatherium, Enterobacter, Erwinia, O. anthropi TRS-2, and 
Pseudomonas striata are reported to mobilize the soil-bound phosphates 
(Chakraborty et al. 2009). They made soil rich in organic acids, thereby making the 
soil acidic and releasing the bound phosphates. Azotobacter, Beijerinckia, 
Enterobacter, Serratia, Burkholderia, Microbacterium, Bacillus, Pseudomonas, 
Rhizobium, Erwinia, and Flavobacterium are among the most important bacterial 
genera reported for solubilizing soil phosphates (Bhattacharyya and Jha 2012; 
Shahid et al. 2012, 2015, 2018; Mahmood et al. 2018).

The PSB also improve the plant growth by fixing atmospheric nitrogen, provid-
ing the plants with other trace elements like Zn, Fe, etc., or by synthesizing the 
substances that are important for plant growth (Ahemad 2015).

5.3.1.3	 �Production of Phytohormone
Five groups of phytohormones are synthesized by PGPR such as auxins, gibberel-
lins, cytokinins, abscisic acid, and ethylene. These phytohormones are very impor-
tant because they act as communication signals between the plant host and its 
microflora (Tsavkelova et al. 2006). Auxin, especially indole-3-acetic acid (IAA) 
production by microbes, has been of great significance and reported a long time ago. 
It has been stated that ~80% of microbes isolated from rhizosphere of numerous 
crops synthesize auxins as secondary metabolites.

Consequently, IAA is very essential in plant-rhizobacterial interactions (Spaepen 
and Vanderleyden 2011). Various rhizobacterial species, such as Agrobacterium 
spp., Enterobacter spp., Azospirillum spp., Alcaligenes spp., Azotobacter spp., 
Acetobacter spp., Rhizobium spp., Erwinia spp., Herbaspirillum spp., and 
Bradyrhizobium spp., have been documented as auxin-producing bacteria 
(Tsavkelova et  al. 2006). Many rhizospheric bacteria such as Arthrobacter, 
Azospirillum, Azotobacter, Acinetobacter, Micrococcus, Pseudomonas, 
Agrobacterium, Flavobacterium, Rhizobium, Bacillus, Xanthomonas, and 
Clostridium are known to produce gibberellins (Tsavkelova et al. 2006).

Moreover, rhizobacteria belonging to genera Azotobacter, Arthrobacter, 
Rhizobium, Azospirillum, Bacillus, and Pseudomonas have been reported for their 
cytokinin production ability. Thus, PGPR have tremendous ability of phytohormone 
production. Studies have indicated that IAA, gibberellins, and cytokinins produced 
by PGPR are beneficial for plants in terms of their nourishment and signal transduc-
tion. PGPR also help plants to regulate the endogenous ethylene levels in response 
to various stresses (Spaepen et al. 2008).

5.3.1.4	 �Siderophore Production
PGPR secrete low-molecular-weight siderophores with iron-chelating ability, mak-
ing it very difficult for other microbes to access iron. Siderophores bind the soluble 
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form of iron from soil to make it available to plants (Chakraborty et al. 2009). Thus, 
siderophore-Fe complex is up taken by plant roots (Crowley 2006) making the soil 
environment Fe-deficient for pathogenic fungi (Sharma and Johri 2003). 
Pseudomonas fluorescens, and Pseudomonas putida are the best-known siderophore-
producing PGPR species. Under Fe-limiting conditions, many pathogens especially 
fungi are unable to thrive normally (Compant et al. 2005). Siderophores synthesized 
by Pseudomonads have high Fe-chelating ability and, thus, are considered as bio-
control agents (Cornelis 2010; Weller et al. 2002).

5.3.2	 �Indirect Mechanism

The indirect mechanisms are basically the process employed by PGPR to control 
phytopathogens to make conducive environment for normal plant growth. PGPR are 
able to control infectious agents by generating growth inhibitors (i.e., antibiotics, 
antioxidants, and lysis enzymes) or by improving the natural physiological and 
genetic potential of plants to fight with the pathogens (Paul et al. 2001). Thus, it is 
possible that rhizobacteria associations trigger some natural mechanisms in plants, 
a process known as induced systemic resistance (ISR) (Lugtenberg and Kamilova 
2009).

Many rhizobacterial species such as Pseudomonas fluorescens, Proteus secrete, 
and Bacillus have been reported to produce a variety of antifungal molecules under 
in vitro conditions (Verma et al. 2013). Furthermore, ISR plays a significant role in 
signalling of jasmonate and ethylene inside the plant cells, and these hormones are 
involved in the induction of systemic resistance in plants (Glick 2012). The mecha-
nisms involved in controlling plant pathogens by PGPR are competition, fast 
growth, antibiosis, bacteriocin synthesis, extracellular release of hydrolytic 
enzymes, and siderophores production (He and Yang 2007).

Some genera of Serratia, Enterobacter, Pseudomonas, Burkholderia, 
Herbaspirillum, Staphylococcus, Ochrobactrum, and Stenotrophomonas are known 
antagonistic species against the plant pathogens (Han et al. 2005; Parke and Gurian-
Sherman 2001). PGPR can secrete enzymes to easily disrupt the fungal cells by the 
lysis of mycelia and hyphae. For instance, fungal cell lysis occurred when extracel-
lular enzymes laminarinase and chitinase were produced by Pseudomonas stutzeri. 
For potential biological control species like Pseudomonas fluorescens, fast growth 
is required in order to control many diseases such as damping-off of sugar beet, root 
rot of wheat, root rot of pea, and black root rot of tobacco (Sivasakthi et al. 2014). 
In citrus and avocado plants, some root pathogens are suppressed due to microbial 
antagonists that are added by organic wastes (Sultana et al. 2006). The mechanisms 
utilized by antagonist PGPR to lessen the phytopathogenic proliferation are pre-
sented in Fig. 5.2.

5.3.2.1	 �Antibiotics
Antibiotics are low-molecular-weight organic compounds causing direct restric-
tion in metabolism and cell growth of various microbes (Mazhar et al. 2016). The 
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synthesis of antibiotics is supposed to be most efficient treatment and antagonis-
tic activity to inhibit the phytopathogens. Various microbes are known to produce 
these compounds while residing in the rhizosphere zone (Bharti and Tewari 
2015; Zhou et  al. 2016). PGPR produce some antibiotics, e.g., kanosamine, 
2,4-diacetylphloroglucinol (2,4-DAPG), etc. (Martínez-Viveros et al. 2010). The 
bacterial strain of P. fluorescens BL915 is involved in the synthesis of antibiotic 
known as pyrrolnitrins, which have the ability to inhibit the growth of Rhizoctonia 
solani in cotton. Another antibiotic compound 2,4-DAPG is produced by 
Pseudomonads and is most effectively studied antibiotic for membrane destruction 
of Pythium spp. (de Souza et al. 2003).

Pseudomonads are also known to synthesize phenazine compound with great 
antibiotic potential against pathogens such as Gaeumannomyces graminis and 
Fusarium oxysporum (Beneduzi et al. 2012). Some antibiotic molecules (circulin, 
polymyxin, and colistin) are produced by Bacillus spp. and are widely used to con-
trol not only fungal but also bacterial pathogens (Maksimov et  al. 2011). Thus, 
antibiotics play a key role in plant-bacteria interactions in terms of plant biomass 
and health benefits (Fernando et al. 2005).

5.3.2.2	 �Bacteriocins
Proteinaceous toxins referred as bacteriocins are produced by PGPR living in a 
highly competitive environment with plant pathogens. The PGPR is the main 
group of microbes involved in production of these inhibitors (Riley and Wertz 
2002). Bacteriocins have very effective and recognized mechanism to inhibit or 
reduce the phytopathogenic growth (Beneduzi et al. 2012). Colicin proteins are 

Fig. 5.2  Mechanisms utilized by PGPR to control phytopathogens
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most prominent bacteriocins synthesized by Escherichia coli. Some other bacte-
riocins such as megacins, marcescins, cloacins, and pyocins are actively synthe-
sized by B. megaterium, Serratia marcescens, Enterobacter cloacae, and P. 
pyogenes, respectively, and are used in biocontrol experiments (Cascales et  al. 
2007; Abriouel et al. 2011).

5.3.2.3	 �Hydrogen Cyanide (HCN)
PGPR produce a low-molecular-weight compound with antifungal potential known 
as hydrogen cyanide (HCN) (Bashan and De-Bashan 2005). For many metal 
enzymes, HCN acts as an inhibitor, e.g., cytochrome c oxidases. An enzyme known 
as HCN synthetase is involved in the synthesis of HCN from glycine (Blumer and 
Haas 2000). Many bacterial species such as Alcaligenes, Rhizobium, Aeromonas, 
Bacillus, and Pseudomonas have the potential to synthesize HCN (Charest et al. 
2005; Ahmad et al. 2008; Kumar et al. 2014). The role of HCN in the suppression 
of root knot and black rot in tomato and tobacco caused by the nematodes 
Thielaviopsis basicola and Meloidogyne javanica, respectively, is well established 
(Siddiqui 2005; Martínez-Viveros et al. 2010). Furthermore, HCN synthesized by 
Pseudomonas spp. in the rhizosphere reduced root proliferation in Arabidopsis as a 
result of the inhibition of an auxin-responsive gene (Rudrappa et al. 2008; Martínez-
Viveros et al. 2010).

5.3.2.4	 �ACC Deaminase Activity
PGPR with inherent potential to synthesize the enzyme 1-aminocyclopropane-1-
carboxylate (ACC) deaminase make plants able to tolerate ethylene stress by cleav-
ing its precursor ACC into α-ketobutyrate and ammonia (Glick et al. 2007). Ethylene 
is a hormone that can induce an abnormal growth in plants leading to the early cell 
death. The higher ethylene concentrations can be modulated by the onset of the 
bacterially synthesized ACC deaminase enzyme (Ma et al. 2003).

In many types of soil with high salt and metal concentrations, ACC deaminase-
producing bacteria can be inoculated with plant roots in order to make them toler-
ant to high ethylene concentrations (Saharan and Nehra 2011; Akram et al. 2016; 
Shahid et al. 2018). ACC deaminase permits decrease the ethylene levels in plants 
and enhance the nodulation and consequently biomass (Nukui et al. 2000). A wide 
variety of bacterial isolates that have ACC deaminase activity such as 
Achromobacter, Azospirillum, Burkholderia, Enterobacter, Burkholderia, 
Agrobacterium, Pseudomonas, Agrobacterium, Ralstonia, Bacillus, 
Staphylococcus, and Rhizobium have been documented (Blaha et al. 2006; Akram 
et  al. 2016). Thus, different ACC deaminase-producing plant growth-promoting 
bacteria are being willingly used under stressful conditions.

5.3.2.5	 �Induced Systemic Resistance (ISR)
Disease suppression may occur by nonpathogenic rhizobacteria that induce a resis-
tance in plants against the deleterious effects of pathogens, a mechanism known as 
induced systemic resistance (ISR). It is a condition which activates the defense-
related genetic and physiological attributes in plants upon the onset of a disease or 
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adverse environmental conditions (Beneduzi et al. 2012). In plants, ISR is similar to 
pathogen-induced (SAR) systemic acquired resistance in which inducing bacteria 
and the challenging pathogen persisted. Thus, induced resistance provides more 
strength to plants against pathogen (Silveira et al. 2012). It is quite possible that 
same strain produces resistance against many pathogens in the same plant. 
Especially, Pseudomonas and Bacillus spp. are the rhizobacteria mostly examined 
to activate the ISR (Kloepper et al. 2004; Van Wees et al. 2008). Resistance-inducing 
and antagonistic rhizobacteria may be collectively valuable in the formulation of 
new inoculants due to their cumulative effect for biocontrol strategies to efficiently 
enhance agricultural productivity (Tariq et al. 2017).

5.4	 �Factors Affecting the PGPR Colonization 
in the Rhizosphere

There are some biotic and abiotic factors that influenced the PGPR species in rhizo-
sphere. The most efficient bacterial strains are the ones that effectively colonize the 
roots in the rhizosphere area in order to exert their growth-promoting effects 
(Prashar et al. 2014). PGPR diversity is influenced by following factors and is rep-
resented in Fig. 5.3.

5.4.1	 �Biotic Factors

Plant is a very important factor in determining bacterial strains that are predomi-
nantly near the root zone in terms of its root exudation and chemotaxis. Plant-related 

Fig. 5.3  Factor affecting PGPR-based plant growth
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characteristics influencing the bacterial colonization include age of the plant, culti-
var and root architecture, etc. (Prashar et al. 2014; Santi et al. 2013). Plant age and 
growth rate are the key decisive factors for bacterial communities in order to colo-
nize the roots and make subsequent establishments in the rhizosphere. Rhizosphere 
deposits also play an important role to decide which type of bacterial communities 
would be attracted toward the roots, and these deposits are again linked with plant 
species, age of plant, root architecture, and type of microbial communities associ-
ated with roots (Adesemoye et al. 2008).

However, the metabolic adaptability and functional diversity of PGPR that are 
well established in rhizosphere are due to many genetic factors possessed by them 
or due to their interaction with plants itself along with eukaryotic and prokaryotic 
organisms. The interactions in the rhizosphere and bulk soil are quite different due 
to the direct influence of roots (Mena-Violante and Olalde-Portugal 2007).

5.4.2	 �Abiotic Factors

Soil is the medium of plant growth and survival, and it can directly influence bacte-
rial population establishing nearby plant roots. Numerous physical and chemical 
attributes of soil affect the nutrient availability and physiological and morphological 
features of newly established PGPR species (Dutta and Podile 2010). Thus, soil 
texture, nutrient concentration, organic matter, soil pH, temperature, and manage-
ment practices (residue incorporation, fertilizer, tillage, pesticide, irrigation, and 
cropping) are the main factors that influence the colonization of bacteria in the rhi-
zosphere (Prashar et al. 2014). Moreover, climatic conditions such as temperature, 
humidity, wind speed, sunshine, etc. also alter the bacterial population and diversity 
in the rhizosphere.

5.5	 �PGPR as Future Prospects

There is a lot to acquire from bacterial associations and existing mechanisms of 
PGPR-related plant growth due to the poor understanding of complex plant-soil-
bacteria interactions. In addition, there exists a great need to explore new mecha-
nisms that plant-associated bacteria adopt to change the plant physiology. During 
the last few decades, major focus of scientists working on plant-associated bacteria 
was on Rhizobium-based symbiotic nitrogen fixation system. But there is still a lot 
to learn from no-symbiotic associations of rhizospheric and endophytic bacteria that 
show diverse patterns of colonization and remarkably alter the growth of host plant 
(Compant et al. 2005; Husen 2016; Akram et al. 2017). New insights into PGPR-
based mechanisms will open new horizons to use state-of-the-art scientific 
approaches for effective exploitation of PGPR as growth stimulators, modulators, 
and biocontrol agents (Walsh et al. 2001). For example, in biocontrol activity, iden-
tification of role of edaphic factor that increases the antibiotic activity and produc-
tion is an important factor (Compant et al. 2005).
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Similarly, modification of number and diversity of rhizosphere bacteria to effec-
tively utilize raw materials like molasses, sugars, and crop residues can open new 
insights into the plant-microbe interactions (Gamez et  al. 2016; Welbaum et  al. 
2004). Moreover, less attention is given to organic fraction of soil phosphorus for 
solubilization/mobilization, and characterization of PGPR strains with inherent 
potential for organic phosphorus mobilization may reduce the use of chemical phos-
phatic fertilizers. Similarly, bacterial genetic mechanisms for soil phosphorus solu-
bilization are poorly understood, and attention should be paid to explore new 
bacterial genetic elements in order to mobilize mineral and organic fractions of soil 
phosphorus. Recognition of several mechanisms that facilitate the association of 
bacterial strains with plants and fungi is necessary. Moreover, application of gene 
transfer techniques like cloning and transformation and genome-editing techniques 
like CRISPR-Cas9 can be applied to bacterial strains in order to harness their 
genetic potential (Table 5.1).

Table 5.1  Respective mechanism and representative species involved in PGPR-based plant 
growth

Chemicals PGPRs Beneficial effects References
Direct mechanism
Nitrogen 
fixation

Azotobacter vinelandii, 
Bacillus, Rhizobium, 
Beijerinckia derxii, 
Klebsiella pneumoniae, 
Enterobacter cloacae, 
Citrobacter freundii, and 
Pseudomonas putida

The atmospheric N2 is 
converted into 
plant-utilizable forms 
and hence improvement 
in plant development 
and yield

James et al. 
(2000), 
Meunchang et al. 
(2006)

Phosphate 
Solubilization

Pseudomonas striata, 
Enterobacter, Erwinia, 
Bacillus megaterium, 
Ochrobactrum anthropi, 
Bacillus, Beijerinckia, 
Burkholderia, Rhizobium, 
and Serratia

Solubilizing inorganic 
phosphorus from 
insoluble compounds 
and available to the 
plants

Chakraborty 
et al. (2009)

Phytohormones 
production

Azotobacter, Arthrobacter, 
Azospirillum, Pseudomonas, 
Bacillus, Acinetobacter, 
Flavobacterium, 
Enterobacter, Micrococcus, 
Agrobacterium, Clostridium, 
Rhizobium, and Xanthomonas

Play an important role 
as regulators of growth 
and development of 
plants

Akhtar and 
Siddiqui (2009), 
Bottini et al. 
(2004), 
Tsavkelova et al. 
(2006)

Siderophore 
production

Pseudomonas fluorescens, 
Rhodococcus, Acinetobacter, 
and Pseudomonas putida

Solubilize and sequester 
iron from the soil and 
then provide it to the 
plant cells

Chakraborty 
et al. (2009), 
Compant et al. 
(2005)

Indirect mechanism
Antibiotics Pseudomonas and Bacillus Prevent the detrimental 

effects of pathogens on 
plants by production of 
inhibitory substances

Chaiharn et al. 
(2009), Verma 
et al. (2013)

(continued)
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5.6	 �Conclusion

Plant growth-promoting rhizobacteria (PGPR) are underestimated or ill-studied to 
explore their potential for plant growth promotion. The main reasons for their non-
acceptance at wider level are variability in outcomes, slow action, lack of farmer’s 
counseling, and lack of knowledge about their method of application. Being 
microbes, their physiological and genetic potential depend on many environmental 
factors including both biotic and abiotic ones; thus the proper understating of these 
factors can boost the PGPR-linked agricultural output. In future, the replacement of 
chemical fertilizers with PGPR-based formulations is a huge challenge for research-
ers, farmers, industrialists, and policy makers.
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Abstract
Plant growth-promoting rhizobacteria (PGPR) have been studied over centuries 
for their role in increasing nutrient uptake, providing various growth hormones 
and mitigating biotic and abiotic stresses. The production of growth hormones, 
organic acids and enzymes for nutrient mineralization and solubilization; rhizo-
remediation of heavy metals; synthesis of osmoprotectants, antioxidants, hydro-
lytic enzymes and antifungal compounds; quorum quenching; release of 
siderophores; etc. have been so far linked with plant-beneficial PGPR activities. 
Apart from these roles, a novel trend in PGPR-mediated plant benefits is struc-
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tural modification of the root system architecture of the associated plants. Root 
system is the most important organ that satisfies most of the plant needs but 
unfortunately left unattended in research areas. However, there are certain stud-
ies reporting the capability of PGPR to improve or strengthen the plant root 
system architecture (RSA). Synchronizing the ability of PGPR to improve the 
root development of field crops is lacking which would be highly useful to help 
the crops sustain the adverse conditions. In the present review, PGPR-mediated 
root architectural improvements are linked to plant growth promotion. Various 
mechanisms adopted by different PGPR for RSA alteration and the resulting 
multiple benefits to the plant are highlighted and sequentially explained. This 
article would facilitate detailed understanding on PGPR-mediated RSA studies 
and pave a platform for further exploration of PGPR related to RSA improve-
ment for achieving sustainable yield of agriculturally important crops.

Keywords
Gene regulation · Hormonal modulation · Rhizobacteria · Root architecture · 
Sustainability

6.1	 �Introduction

Plant growth-promoting rhizobacteria (PGPR) refer to beneficial bacterial commu-
nity dwelling in the rhizospheric region of plant. Upon colonization, they provide 
macro- and micronutrients from the soil, release growth hormones and induce resis-
tance against biotic and tolerance against abiotic stresses to their plant partner 
through diversified direct and indirect mechanisms. The proliferation of symbiosis 
between plant and PGPR also improves the soil aggregation, nutrient carrying 
capacity and resilience of soil during stress conditions. It is also evident that the 
healthy plant-microbe interactions could ensure the soil carbon build-up. Apart 
from these, a new insight to rhizobacterial-based plant improvement is modification 
of root system architecture (RSA) of a plant. The root topology, spatial arrangement 
and number and length of root hairs constitute RSA which is crucial for crop anchor-
age, proficient uptake of water and minerals and efficient microbiotic interactions. 
PGPR adopt several mechanisms to structurally shape the plant root which mostly 
becomes highly useful for the growth and sustainability of the plant. Although there 
are a lot of studies to prove this concept, a holistic approach to explore this idea for 
plant improvement is still at rest. Very few conceptual papers alone are available for 
understanding the PGPR-mediated RSA shaping in plant species (Sukumar et al. 
2013; Vacheron et al. 2013).

In this review, we discuss about the importance of root architecture in relation to 
plant growth and fitness; key PGPR as root architecture modifiers; direct role of 
PGPR in alteration of RSA including rhizobacterial genome-mediated, hormone-
mediated and papillae formation; and indirect role of PGPR metabolites in 
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alteration of plant genetic and hormonal pathways in relation to RSA. The practical 
difficulties in RSA studies are explained, and the future thrust of microbial-mediated 
RSA modifications in connection with agricultural sustainability is elaborated.

6.2	 �Root Architecture and Its Importance

Root system constitutes an important part of any plant and well-studied for its role 
in anchorage, nutrient and water acquisition, storage (tuber crops) and shelter for 
rhizospheric microbiota. On this account, root system serves as the heart of the plant 
without which the entire system would collapse. Root architecture refers to spatial 
arrangement and distribution of every single component of the root system such as 
root diameter, number and length of root hairs, undulations of the root axis, root cap 
and topology, number, length and spatial distribution of primary roots, adventitious 
roots and lateral roots (Lynch 1995). Root system comprises of several components, 
some of which are formed at embryo, while others develop postembryonically 
(Fig. 6.1).

RSA is highly plastic and varies depending on the availability of soil resources, 
environmental factors, plant type and associated microorganisms. As the water and 
nutrients are unevenly located in soil, spatial arrangement of root system is most 
important for effective resource exploitation (Lopez-Bucio et  al. 2003). Root 

Root system 
components

Embryonically 
developed

Primary 
root

First formed 
(radicle)

Seminal 
root

Adjacent to 
radicle 

(Monocots)

Post-Embryonically 
developed

Adventitious 
root

Develop from plant 
part other than root

Crown 
root

Basal 
root

Lateral root

Branch out from 
primary root

First 
order

Second 
order

Fig. 6.1  Components of root system and their order of development in a plant: in most of the land 
plants, radicle of the germinating seed or embryo develops into primary root system. In monocots, 
seminal roots arise adjacent to the radicle and are responsible for initial absorption of water and 
nutrients. Both primary and seminal roots develop during seed embryogenesis. For instance, crown 
or nodal roots develop from the nodes, and basal roots arise from the basal portion of the stem. 
Lateral roots also develop in later stages but branch out from primary roots. These are first-order 
lateral roots which give rise to second-order lateral roots and so on
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system has a holistic potential to sense and respond to abiotic and biotic stresses in 
soil and communicate with the aerial plant parts through signalling pathways 
(Schachtman and Goodger 2008).

Morphology and physiology of the root impact the growth and development of 
aerial organs through alteration of root to shoot transport of mineral nutrients or 
organic signalling molecules including hormones and proteins (Ron et al. 2014). 
For example, whenever plant encounters drought stress, the root communicates to 
the rest of the plant and reduces the level of endogenous cytokinin production.

This in turn inhibits the shoot growth and enhances root elongation aiding in 
deeper search for water resource. Endogenous abscisic acid level shoots up on 
decline in cytokinin which stimulates stomatal closure and prevents transpiration 
loss (Arkhipova et al. 2007). At the same time, root architecture alters itself accord-
ing to the type of nutrient demand. Whenever phosphorous deficiency occurs in the 
soil, plants reduce their primary root length while promoting dense lateral roots and 
extended root hairs and form clustered bunch of roots to facilitate wide exploration 
of soil to fetch phosphorous (Niu et al. 2013; Peret et al. 2014). In contrast to this, 
the plants respond different to nitrogen quest by increasing the primary and lateral 
root length and ensure deeper resource hunt (Kong et  al. 2014). Similarly, plant 
seeks the help of root architecture to tolerate the water deficit condition. Deep-
rooted plants possess extreme tolerance to drought as they percolate the soil to 
greater depth and uptake the water available in deeper soil zones (Yu et al. 2008; 
Comas et al. 2013). Root hairs, lateral roots and un-suberized young root tips are 
directly involved in horizontal and vertical soil exploration for water and mineral 
uptake (Suzuki et al. 2003).

In the case of tuber crops such as yam, potato and cassava, where the economi-
cally important or edible part lies below ground, the root architecture is directly 
linked to yield potential (Khan et al. 2016). Apart from these, photosynthetic exu-
dates released by the plants get leaked into the soil through the root system, and this 
contributes to the enrichment of nutrients in the rhizosphere soil (soil under influ-
ence of the root). This ultimately attracts millions of microbes, which colonize in 
and around the root and sometimes travel throughout the plant system, and this is 
popularly called ‘rhizospheric effect’. The microbes in turn contribute to enhanced 
plant growth, biotic stress resistance, abiotic stress tolerance and root architecture 
shaping through various mechanisms. On the whole, the root system architecture 
delivers endless benefits to the plant system either directly or through recruitment of 
microbial volunteers.

6.3	 �Direct Role of PGPR on RSA Modification

PGPR, a sub-group of rhizo-microbiome, isolated and characterized from different 
crops and regions were reported to modify the root architecture (Vacheron et al. 
2013), while no attempts were made to document total rhizo-microbiome effect on 
RSA modification. Hence, we have summarized the impact of individual PGPR 
strains on the changes in RSA, rather than whole microbiome approach. Most of the 
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PGPR adopt certain direct mechanisms to structurally design or shape the root 
architecture of the associated plants. RSA modulations are generally accomplished 
by employment of root-inducing (Ri) plasmid, synthesis of growth hormones and 
triggering certain depositions within root tissues. These RSA modifications serve as 
one of the important factors helping plants either to withstand stress or to achieve 
increased productivity, and hence this concept is being agriculturally exploited.

6.3.1	 �Rhizobacterial Genome-Mediated RSA Modification

Rhizobium rhizogenes is a gram-negative soil-inhabiting bacterium responsible for 
overproduction of adventitious roots at the site of infection, which was identified for 
crazy root syndrome (Riker et al. 1930). Phenolic compounds such as acetosyrin-
gone released by wounded plants chemotactically attract R. rhizogenes (De Cleene 
and De Ley 1981). The bacteria transfer its Ri plasmid into the plant through hori-
zontal gene transfer facilitated by transfer DNA (t-DNA) (Fig. 6.2c). This bacterial 
gene on integrating into the plant genome triggers the rapid emergence of hairy 
roots. These roots are shoot-derived as they arise from hypocotyl region and their 
similarity with primary root was proved in Arabidopsis (Lucas et al. 2011). However, 
these hairy roots differ from adventitious roots by few characteristics. They possess 
one additional layer of cortex (Ron et al. 2014), and most interestingly their growth 
is agravitropic and highly plagiotropic (Veena and Taylor 2007), while the regular 
adventitious roots are gravitropic and less plagiotropic. However, Agrobacterium-
induced RSA modifications are highly useful in biotechnological aspects as the 
hairy roots can grow and proliferate rapidly under in  vitro conditions, without 
exogenous plant growth promoters. They serve as ideal tool for plant-pathogen 
interaction studies, secondary metabolite production, genetic engineering and bio-
remediation, which has been already detailed in various review papers (Tepfer et al. 
1989; Hu and Du 2006; Georgiev et al. 2007; Veena and Taylor 2007) and is beyond 
the scope of the present review.

6.3.2	 �Rhizobacterial Hormone-Mediated RSA Modulation

One of the well-documented strategies of PGPR for RSA improvement is the 
release of hormones which regulates plant growth. Generally, these hormones are 
called phytohormones when endogenously produced by the plants. Interestingly, 
the derivatives of auxins, cytokinins, ethylene, gibberellins and abscisic acid are 
exogenously supplied by PGPR and notably influence the plant growth in spe-
cific manner (Arshad and Frankenberger 1997). Whenever there is a fluctuation 
in the ratio of growth hormones, the crop faces architectural changes, which can 
be exploited for shaping the crop desirable to withstand stress and provide sus-
tainable yield. In this aspect, microbially derived plant growth regulators have 
particularly contributed to RSA modifications (Table  6.1). Azospirillum, the 
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Fig. 6.2  Mechanisms of microbial-mediated root architecture changes in plants. Root architecture 
of a plant gets altered through four different mechanisms under the influence of rhizobacteria. (a) 
Rhizobacterial hormone-mediated RSA modulation – tryptophan released during root exudation is 
converted into IAA by soil-dwelling bacteria which is uptaken by the plants. The resulting altera-
tion in root IAA level creates impact over RSA. (b) Genetic regulation of RSA-related hormonal 
pathways of plant by PGPR – auxin-responsive gene of plants contributes to their root architecture 
shaping. Transcription of these genes is inhibited when their promoter, auxin-responsive element 
(ARE), is blocked due to binding of auxin-responsive factor (ARF) with auxin/indole-3 acetic acid 
(Aux/IAA). Aux/IAA factor is removed and degraded by ubiquitylation process in the presence of 
IAA, ubiquitin (Ub) and SCFTIR1 to switch on ARE operon. PGPR release certain unknown com-
pounds which act as transcriptional regulators of AUX/IAA which is one among the key genes 
involved in this process and thereby contributes to plant RSA modulation. (c) Rhizobacterial 
genome-mediated RSA modification – occurrence of wound or damage to the root leads to the
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Fig. 6.2  (continued) release of acetosyringone (AS) which attracts Rhizobium rhizogenes towards 
it and activates the synthesis of single-stranded (ss) T-DNA from bacterial plasmid. ss T-DNA gets 
transported into the root cell through the wound and integrates into plant chromosome which is 
facilitated by bacterial virulent factors indicated as red-, blue- and grey-coloured circles. Bacterial 
T-DNA integrated into plant chromosome initiates opine synthesis which induces root architec-
tural alterations. (d) PGPR-induced callose deposition for RSA modification – microbe-associated 
molecular patterns (MAMPs) released by PGPR induce generation of reactive oxygen species 
(ROS) within plant cells. ROS generation in turn leads to increase in level of salicylic acid (SA) 
and abscisic acid (ABA). SA directly triggers callose deposition by regulating the plasmodesmata-
located protein 5 (PDLP5)-dependent expression of callose synthase gene (CALS10). In contrast, 
ABA indirectly stimulates higher deposition of callose by blocking the expression of PR1 and 
inhibiting the synthesis of callose-degrading enzyme (ß 1,3gluconase). On the whole, PGPR 
induces callose deposition in root cells which leads to change in RSA

associative symbiotic nitrogen-fixing plant growth-promoting bacteria profusely 
colonizing the monocot roots, is the first bacterial strain reported to be the root 
modifier (Barbieri et al. 1986).

Among the rhizobacterial hormones, indole-3-acetic acid (IAA) is being explored 
right from the 1990s when scientists believed only auxin derivatives contributed to 
RSA improvement (Fig. 6.2a). Later on, certain studies revealed the contribution of 
other growth hormones released by rhizobacteria for RSA modifications (Joo et al. 
2004; Arkhipova et al. 2007; Asari et al. 2017). PGPR converts tryptophan present 
in the root exudates into physiologically active form of auxin, IAA, which at lower 
concentration improves elongation of primary root and at higher concentration sup-
ports lateral root formation (Casimiro et al. 2001).

PGPR synthesized zeatin – a cytokinin compound – improves root exudation and 
reduces root/shoot ratio, while ethylene released by PGPR stimulates root hair for-
mation at lower concentrations. Abscisic acid and gibberellic acid synthesized by 
PGPR are least explored for its role in root system modification although few litera-
tures have documented their effects (Gutierrez-Manero et  al. 2001; Bottini et  al. 
2004; Cohen et al. 2008).

6.3.3	 �PGPR-Induced Papillae in Root Cells Leading to RSA 
Modification

Upon colonization, PGPR instructs various cellular- and tissue-level structural 
changes in the root system of the associated plant by inducing depositions or papil-
lae in root cells which mainly constitute callose, phenol and lignin. These deposi-
tions enhance the disease-resistant ability of the plant by hardening its cell wall 
(Schmelzer 2002). Callose is a polysaccharide comprised of glucose molecules with 
ß-1, 3 linkages, while lignin is a complex organic polymer with cross-linked pheno-
lic compounds. These are usually secreted by the plant cell in response to wounds, 
infection or pathogen entry.
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Interestingly, colonization of PGPR also induces these depositions in root cell 
wall and intercellular spaces without causing infection to the host plant (Fig. 6.2d). 
However, this would aid the plant system to prevent or block the entry of pathogens 
rather than responding after infection (Ramamoorthy et al. 2001). In some cases, 
rhizobacteria activate the phenylpropanoid pathway of the plant and induce 

Table 6.1  Role of PGPR-mediated growth hormones in crop-specific RSA modifications

PGPR Crop
Growth 
hormone RSA modification References

Azospirillum 
brasilense

Triticum 
aestivum

IAA Increase in number 
and length of lateral 
roots

Barbieri et al. 
(1986) and 
Barbieri and Galli 
(1993)

Bacillus and 
Rhizobium

Phaseolus 
vulgaris

IAA Promote root 
growth and 
nodulation

Srinivasan et al. 
(1996)

A. Brasilense Triticum 
aestivum

IAA Decrease in root 
length and increase 
in root hair 
formation

Dobbelaere et al. 
(1999)

A. brasilense and 
Klebsiella 
pneumonia

Oryza sativa IAA Development of 
lateral roots and 
root hairs. Increase 
in root surface area 
and root dry matter

El-Khawas and 
Adachi (1999)

Pseudomonas 
putida

Vigna radiata IAA Increase in number 
of adventitious roots

Patten and Glick 
(2002)

Unauthenticated 
PGPR

Triticum 
aestivum

IAA Root elongation Khalid et al. 
(2004)

Unauthenticated 
PGPR

Oryza sativa IAA Increase in root 
length

Ashrafuzzaman 
et al. (2009)

Bacillus, 
Paenibacillus and 
Comamonas

Actinidia 
deliciosa

IAA Promote root 
formation in stem 
cuttings

Erturk et al. 
(2010)

A. brasilense Arabidopsis 
thaliana

IAA Increase in number 
of lateral roots and 
root hairs

Spaepen et al. 
(2014)

A. brasilense Solanum 
lycopersicum

IAA and 
ethylene

Increase in root hair 
length and root 
surface

Ribaudo et al. 
(2006)

Bacillus 
amyloliquefaciens

Arabidopsis 
thaliana

IAA and 
cytokinin

Increase in lateral 
root outgrowth and 
root hair formation

Asari et al. (2017)

Bacillus sp. Lactuca 
sativa

Cytokinin Shorten root length, 
but increase total 
root mass

Arkhipova et al. 
(2007)

Bacillus subtilis Platycladus 
orientalis

Cytokinin Reduce root/shoot 
ratio

Liu et al. (2013)

Bacillus pumilus Capsicum 
annuum

Gibberellic 
acid

Increase in root 
fresh weight

Joo et al. (2004)
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overaccumulation of lignin (Kandan et  al. 2002). These phenomena are being 
exploited to provide disease resistance to the plants. Various cases reported for 
enhanced disease resistance offered to the plants through rhizobacterial-induced 
root depositions are tabulated (Table  6.2). Considering the PGPR-induced RSA 
modifications of a plant, this trait has less influence.

These cellular-level modifications were reported to have more significant role for 
disease resistance, rather than root modification for nutrient and water acquisition. 
Further research is required to decipher these cellular-level chemical depositions on 
the root architecture-related benefits.

6.4	 �Indirect Role of PGPR on RSA Modifications

Apart from the direct genetic element- and hormone-mediated root modifications, 
PGPR can interfere the hormonal pathways of plant and modulate their hormonal 
levels and subsequently cause the changes in the root architecture. The interference 
may be either due to small molecules and enzymes of PGPR or due to direct regula-
tion of those pathway genes by PGPR.

Table 6.2  Documented studies on the role of PGPR-mediated root depositions for pathogen 
resistance

Crop PGPR Pathogen(s) resisted
Root 
deposition References

Pisum sativum Pseudomonas 
fluorescens

Pythium ultimum and 
Fusarium oxysporum 
f. sp. pisi

Callose Benhamou 
et al. (1996a)

Pisum sativum Bacillus pumilus Fusarium oxysporum 
f. sp. pisi

Callose and 
phenol

Benhamou 
et al. (1996b)

Lycopersicon 
esculentum

Pseudomonas 
fluorescens

F. oxysporum f. sp. 
radicis-lycopersici

Callose M’Piga et al. 
(1997)

Strawberry Azospirillum 
brasilense

Colletotrichum 
acutatum

Callose and 
phenol

Tortora et al. 
(2012)

Piper betle Serratia marcescens Phytophthora 
nicotianae

Phenol Lavania et al. 
(2006)

Lycopersicon 
esculentum

Pseudomonas 
fluorescens

Spotted wilt virus Lignin Kandan et al. 
(2002)

Gossypium 
hirsutum

Bacillus cereus Xanthomonas 
axonopodis pv. 
malvacearum

Lignin Ishida et al. 
(2008)

Pearl millet Bacillus pumilus Sclerospora 
graminicola

Lignin Niranjan Raj 
et al. (2012)

Cicer 
arietinum

Pseudomonas, 
Trichoderma and 
Rhizobium

Sclerotium rolfsii Lignin Singh et al. 
(2013)
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6.4.1	 �Regulation of RSA-Related Hormonal Pathways of Plant 
by Metabolites and Enzymes of PGPR

Volatile and non-volatile compounds emitted by PGPR either in the rhizosphere 
or within the plant roots dictate the hormonal pathways and thereby causing RSA 
alterations. For instance, Azospirillum brasilense and Pseudomonas fluorescens 
produce secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG) and 
nitric oxide (Bergsma-Vlami et al. 2005) which interfere in auxin-dependent sig-
nalling pathway of plants. The former controls the lateral root formation (Creus 
et al. 2005), while the later induces root branching (Brazelton et al. 2008). There 
are few studies on coculture of Arabidopsis with Bacillus demonstrating the effect 
of bacterial volatiles on hormonal pathways (Ryu et al. 2004; Olah et al. 2005; Ali 
et al. 2010; Gutierrez-Luna et al. 2010). In all the above-mentioned cases, the root 
architecture of Arabidopsis such as lateral root growth and root hair formation 
was altered justifying that the impact of volatiles on plant hormonal pathways 
indirectly influences the RSA. Apart from Bacillus, volatile blend of Pseudomonas 
fluorescens WCS417 contains diketopiperazine which interferes with auxin bio-
synthesis and enhances lateral root and root hair formation in Arabidopsis 
(Zamioudis et al. 2013). Serratia marcescens influences multiple signalling path-
ways including auxin to increase the lateral root growth followed by primary root 
inhibition in Arabidopsis (Shi et al. 2010). A novel compound N-acylethanolamine 
(NAE) is released by plants as a response to bacterial communication by 
N-acyl homoserine lactone (AHL). This compound is a mimic of bacterial AHL 
and has been reported to affect the primary root growth, lateral root formation and 
root hair development in Arabidopsis seedlings (Ortiz-Castro et  al. 2009). The 
PGPR enzyme reported so far to be a RSA modifier is 1-aminocyclopropane 
1-carboxylate deaminase (ACCD).

PGPR produce ACCD to downregulate stress ethylene pathway, which cleaves 
the ethylene precursor ACC released by plant roots. Thus, ACC reuptake and 
accumulation in roots get reduced, thereby preventing ethylene overproduction 
during stress. This effect in turn ensures root elongation, which would otherwise 
get inhibited under abiotic stresses (Glick 2005). ACC deaminase-mediated root 
growth promotion or modification has been well-documented with Azospirillum, 
Methylobacterium, Bacillus, Enterobacter and Pseudomonas (Li et  al. 2000; 
Saleh and Glick 2001; Madhaiyan et al. 2006; Shaharoona et al. 2006; Chinnadurai 
et al. 2009). There are numerous functionally undetermined compounds released 
by various PGPR groups that play a vital role in organizing the plant hormonal 
pathways leading to various architectural changes. A lot of exploration of the 
total metabolomic profile of PGPR is required to identify the functions of all the 
volatile and non-volatile compounds exudated by PGPR so as to tune them for 
the benefit of plants.
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6.4.2	 �Genetic Regulation of RSA-Related Hormonal Pathways 
of Plant by PGPR

High-throughput investigations involving transcriptomic analysis are recently 
emerging to detect the role of PGPR on plant RSA.  Although several hormonal 
pathways get altered due to PGPR, auxin is the only hormone extensively analysed 
at molecular level due to its dominant role in root architecture shaping (Sukumar 
et al. 2013). It has been demonstrated that coculture with Bacillus subtilis increases 
auxin accumulation in roots. This effect was masked when 1-naphthylphthalamic 
acid (auxin transport inhibitor) was applied.

Thereby, their experiment proved that this particular PGPR strain upregulates 
auxin transporter genes leading to transport of auxin from shoot (site of synthesis) 
to root and this induces RSA alterations (Zhang et al. 2007). The concept of gene 
regulation by PGPR with respect to auxin was also proved by comparative study 
with mutants (silencing the genes involved in auxin pathway). Inoculation of wild 
and IAA transport and signalling mutants of Arabidopsis (AUX1 and AXR1) with 
Phyllobacterium brassicacearum led to 50% increase in lateral root length of wild 
and no effect over that of mutants. This indicates the role of auxin-related genes of 
plant for PGPR-mediated RSA modifications (Contesto et  al. 2010). Later, 
Zamioudis et al. (2013) used auxin perception and signalling mutants of Arabidopsis 
and evidenced auxin-dependent reduction in lateral root development during 
Pseudomonas fluorescens inoculation. These studies ascertain the fact that once 
auxin-responsive genes are knocked out in plants, PGPR could not influence its 
RSA. Hence, it is evident that PGPR influence the RSA by regulating the expression 
of auxin-related genes in plant.

One step ahead, the bacterial compounds (Pseudomonas aeruginosa) responsi-
ble for activating auxin-inducible gene expression in Arabidopsis were identified to 
be cyclodipeptides and their derivative, diketopiperazine (Ortiz-Castro et al. 2011). 
Similarly, DAPG released by Pseudomonas fluorescens modified the RSA of wild 
tomato through regulating auxin pathway genes, which was nullified in auxin-
resistant diageotropica mutant tomato (Brazelton et al. 2008). Based on these reports 
in Arabidopsis, we tried to unravel the involvement of auxin signalling genes (AUX/
IAA) of Oryza sativa (rice) for PGPR-mediated RSA changes.

When we traced the time course abundance of six different transcripts (OsIAA1, 
OsIAA4, OsIAA11, OsIAA13, OsAA14 and OsIAA23) of AUX/IAA family in Bacillus 
altitudinis (FD48) inoculated rice seedlings, vast variations were found compared to 
uninoculated rice. Positively modified root architecture with differing expression 
pattern of auxin signalling genes was noticed in FD48 inoculated rice seedlings 
indicating that this PGPR strain alters rice RSA by regulating the genes involved in 
auxin pathway (Ambreetha et al. 2018) (Fig. 6.2b). However, these results are only 
the inklings and need whole transcriptome analyses to unravel the regulatory sys-
tems involved in the auxin-responsive pathway genes so as to use it for the crop 
productivity under unfavourable conditions. Besides, genetic regulation of other 
hormonal pathways such as cytokinin and ethylene due to PGPR inoculation is least 
explored, although they considerably contribute to RSA changes.
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6.5	 �Constrains to Study Microbial-Mediated RSA

Investigation of below ground part of a plant is not as easy as that of visible aboveg-
round parts. Research papers on shoot architecture of the plant are certainly higher 
than root architecture studies due to practical constrains at laboratory and field level. 
Field-level experiments deliver real-time results and help to understand the effects 
under natural varied conditions. On this note, RSA studies would be better if done 
in open field rather than greenhouse or laboratory level. Unfortunately, investigation 
of microbial-mediated RSA at field level is very hectic due to one or many of the 
following reasons.

Root architecture is highly sensitive to abiotic and biotic factors and gets altered 
erratically under natural conditions. Soil is highly heterogenic and has varying 
physical and structural properties within a single field. This may affect the unifor-
mity of root architecture even among the crops growing in one field. Moreover, 
water holding capacity and nutrient distribution of soil may not be uniform at all 
sites of a field, and root naturally gets directed accordingly. Despite these difficul-
ties, there are certain high-throughput technologies generated for field level study of 
root architecture.

A group of scientists developed X-ray micro-computed tomography scanning 
and RooTrak that can non-invasively track the three-dimensional view of moving 
objects in soil (Mairhofer et al. 2012). Another group of authors innovated com-
bined field imaging and algorithmic approach to assess the root systems under natu-
ral condition (Bucksch et al. 2014). However, both technologies have their own pros 
and cons. Root system is highly plastic and determined by various environmental 
and genetic factors which cannot be controlled under open-field conditions. Plants 
get influenced by almost all external factors, and it is highly unpredictable to spot 
one particular source for root architectural alterations. One can never expect similar 
number of lateral roots or root length even for two near most plants. Adding to these 
issues, root architecture analysis at field requires destructive method of sampling 
unless we afford for high-cost technologies (Trachsel et al. 2011). Another notable 
factor is diversified groups of soil microorganisms thriving in and around the plants. 
It is not an easy task to identify which among the million microbes has caused root 
architectural changes in that plant and is practically tedious to provide sterile soil 
for the entire field and maintain it throughout the cropping period. These are the 
major constrains that hinder the researchers from carrying out large-scale field trials 
regarding microbial-mediated root architecture changes.

Laboratory study provides certain advantages such as maintenance of controlled, 
microbe-free culturing condition to analyse the effect of particular PGPR over the 
RSA of a particular plant. Results can be reproduced efficiently due to the absence 
of impact from external factors. Moreover, easy and non-destructive imaging of 
RSA is possible by allowing the plants to germinate and grow in gellan gum either 
in glass box or tubes (Nakamura et al. 2006; Kitomi et al. 2011; Shrestha et al. 2014; 
Ambreetha et  al. 2018) or under hydroponics (Xu et  al. 2013) or in rhizobox 
(Courtois et al. 2013).
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The entire architecture of the root can be monitored and imaged all through the 
experimental period using high-throughput imaging software such as RootScan, 
RootNav, DART, GiA Roots, IJ Rhizo, Root System Analyser, RootReader2D, 
RootReader3D and RSML. Despite these advantages, laboratory study possesses 
certain constrains compared to the field study. First issue is, it is not always possible 
to artificially provide the naturally occurring form of nutrients to the plant under 
in vitro culturing. The architecture gets influenced by the shape of the container and 
nutrient composition of the media used. There are chances for other microbial con-
tamination as plants are grown in nutrient-rich medium, and hence completely ster-
ile environment with controlled light and temperature has to be maintained. 
However, there is an unresolved question whether all the metabolic and enzymatic 
activities occurring in the plant will remain similar under laboratory and field condi-
tion. Maintenance of huge number of samples as that in field trials is also not pos-
sible. Anyhow, regarding microbial-mediated RSA study, it is advisable to go for 
gnotobiotic investigation to predict the exact mechanism employed by particular 
organism. Every PGPR differs in its mode of action and impact over plant RSA 
which can be precisely traced in vitro. Once the concept is proved at laboratory 
scale, field trials can be done by fertilizing the plants with that particular PGPR in 
sufficient loads, and RSA changes can be confirmed under natural condition.

In recent years, rhizotron has been in limelight to understand the plant-microbe-
soil interactions, which mimic the near field condition, but with all controls as that 
of in vitro culturing system (Bauke et al. 2017; Atkinson et al. 2019). Rhizotron is a 
sophisticated device, which observes the root architecture and growth, and its 
microbiome and physico-chemical changes in the soil in non-destructive way 
throughout the crop period in real time will help to answer many of the key ques-
tions we postulated as above.

6.6	 �Future Thrust

The study of PGPR-mediated RSA alteration lays a platform to identify the organ-
isms that positively modulate the architecture of agriculturally important crops. 
Most of the PGPR-influenced RSA modifications have been proved in Arabidopsis 
and not taken to other important crops. A lot of steps have to be crossed to make this 
concept useful for agricultural productivity. Once a single or consortium of PGPR 
that effectively improve the root architecture is authenticated, it is possible to struc-
turally shape that crop in such a way to efficiently absorb water and minerals, with-
stand abiotic stresses and increase the productivity. Right from last century, microbes 
are used as biofertilizers only to solubilize and transport the minerals from soil to 
plant or fix it from gaseous form in the atmosphere to plant uptake able form. The 
development of inoculants that would improve the plant RSA will be a unique 
approach and serve as a new thrust for crop improvement.

Moreover, scientists are already involved in improving plant RSA and creating 
resistant varieties through molecular breeding approaches. Compared to those 
efforts, the use of inoculants would be easy, less time-consuming, environmentally 
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friendly and cost-effective method for stimulating plant growth and sustainability. 
An important point to be noted is plant rhizosphere is already rich in microbiota that 
is naturally recruited by root exudates. In our approach we are only dropping the 
right PGPR for a plant in the right time so as to help the plant to grow and produce 
more efficiently. As stated earlier, most of the PGPR render multifarious benefits to 
the plants and need not be curtailed to RSA improvement alone. PGPR strains can 
be screened for maximum number of plant benefits and that would be a promising 
strategy for assuring crop sustainability in the future.
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Abstract
Rhizobia is symbiotic diazotrophic soil bacteria infecting the roots of leguminous 
plants to form root nodules to fix molecular atmospheric nitrogen (N2) with the 
aid of nitrogenase enzyme, turning it into a more readily usable form for plants. 
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Rhizobia also possess plant growth-promoting (PGP) properties witnessed by a 
series of molecular dialogue between the plant and the bacteria. Unraveling such 
mechanisms gave the insight toward multifunctional approach of rhizobia in the 
rhizosphere of legumes and compatible plants. Bioavailability of nutrients in the 
soil is enriched by rhizobial action due to metal solubilization and siderophore 
activity. The combined activity of phytohormones, enzymes, and siderophores 
contributes toward the growth and development of the concerned plant along 
with easy nutrient uptake and phytoremediation. Besides, rhizobia aid in 
biocontrol through antibiosis, parasitism, or competition with different patho-
gens for essential nutrient uptake. This has made it an important candidate for 
sustainable agriculture in various economies across the globe.

Keywords
Rhizobia · Sustainable agriculture · Plant growth promoting · Bioavailability

7.1	 �Introduction

The rapid growth of world population demands more food production to be 
commensurate with the demands of human consumption. Shortage of arable land 
has made it difficult to increase cultivated acreage; so efficient management of 
existing croplands for crop production has become indispensable in the twenty-first 
century. The use of chemical nitrogenous fertilizers in the twentieth century has 
promoted crop production by 4–10 times and supported food production over the 
past 100 years. However, the cost of chemical nitrogenous fertilizers is high for 
farmers in developing countries, and their production requires a lot of fossil fuel. In 
addition, the inappropriate or excess application of chemical nitrogenous fertilizers 
has led to environmental damages of groundwater contamination by nitrates along 
with air pollution and global warming due to nitrous oxide. Most legume crops, 
such as soybeans, beans, chickpeas, and groundnuts, and legume forage crops such 
as alfalfa and clover can fix atmospheric dinitrogen (N2) by symbiosis with rhizobia, 
and symbiotic nitrogen fixation via legume-rhizobia symbiosis is the most eco-
friendly approach to supplement plants with their nitrogen requirements. Rhizobia 
are the group of free-living soil bacteria with N-fixing abilities that fix atmospheric 
nitrogen by establishing a mutual relationship with compatible and leguminous 
plants (Alice et al. 2017). Rhizobia are a polyphyletic group of Proteobacteria with 
all of the species belonging to the alphaproteobacteria and betaproteobacteria 
classes. The word Rhizobium in particular is derived from a Latin word “rhizo” 
meaning “root” and “bios” meaning life, term given by Frank (1889). Rhizobia are 
a diversified group, and in recent years the classification has undergone few changes 
due to new phylogenetic studies which eventually lead to the new taxa, and conse-
quently there have been many challenges for the nomenclature system. Formerly, 
Rhizobium species were classified into two genera, the genus Rhizobium and 
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Bradyrhizobium, corresponding to fast-growing strains and slow-growing strains 
which depend on their growth rate on culture medium and generation time. However, 
further observations in between the notion of bacterial growth rate and the host 
range showed a lot of doubt on the validity of the classification. According to the 
new phylogenetic studies, it has been stated that “few species of Rhizobia moved to 
new genera” and different methods has been used to establish such updated data like 
DNA/DNA and DNA/RNA hybridization and serological studies, etc. At present, it 
includes about 6 rhizobial genera consisting of 28 species like Rhizobium alamii, 
Rhizobium mesosinicum, Rhizobium alkalisoli, Rhizobium oryzae, Rhizobium pha-
seoli, Rhizobium pisi, Rhizobium leucaenae, etc. (Zakhia et  al. 2004). Another 
report stated the presence of 44 bacterial species and placed them in 12 genera 
(Sawada et  al. 2003). Legume-nodulating bacteria (LNB), an effective colonizer 
persistent in soil, belong to the proteobacterias with few exceptions which also fall 
under the group of rhizobia.

In biological nitrogen fixation, dinitrogen is reduced to ammonia through the 
bacterial enzyme nitrogenase, encoded by the nif gene. The leguminous plants pro-
vide anaerobic conditions for the effectiveness of the oxygen-sensitive nitrogenase 
enzyme. Besides symbiosis, rhizobia can facilitate the production of antibiotics, 
mycolytic enzymes, and siderophore under iron-limiting conditions as well pro-
duction of hydrogen cyanide (HCN). Rhizobia effectively immunize the plants 
against different pathogens and confer resistance by enhancing the expression of 
different genes. They also have upregulation in specific genes leading to enzyme 
synthesis that enhances the organic phosphate solubilization in soils, also regarded 
as mineralization of organic phosphorus due to the dead remains of plants and 
animals containing a larger proportion of phosphorus in them. The lack of disease 
management strategies faced by researchers of plants that are affected by the dif-
ferent pathogens has become a challenge for the future prospects in agronomy. 
Rhizobia help as a potent organism in resolving such issues and are able to control 
soilborne root-infecting fungi in both leguminous and nonleguminous plants 
(Siddiqui et al. 1998). This has substantially contributed to the agricultural growth 
and may be impactful to sustainable agricultural practices. The use of plant growth-
promoting rhizobacteria (PGPR) is intensively increasing in agriculture and also 
offers a way to replace chemical fertilizers and other pesticides by various mecha-
nisms. The exact mechanism through which PGPR stimulate plant growth is not 
clearly established, although several hypotheses have been put forward such as the 
production of phytohormones (Glick 1995; Bowen and Rovira 1999). Different 
plant pathologists have applied different strategies for biocontrol practices, but one 
of the best methods which can be applied is by furnishing the soil with enhanced 
rhizobial microbiota to provide a frontline defense mechanism against any patho-
gen attack (Weller 1988). In this regard, an experiment has been conducted on 
biological control of the Pythium sp. by damping off of the pea plant (Pisum sati-
vum) and the sugar beet (Bardin et  al. 2011). Applications of the particular 
Rhizobium species resulted in the greatest plant growth, pod number, and nodula-
tion (Akhtar and Siddiqui 2010). Recently, leguminous plants have been reported 
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to be involved in bioremediation by phytoextraction and phytostabilization of 
already accumulated heavy metals from rhizospheric soil, thanks to Rhizobium, 
isolated from metal contaminated soil, that can adsorb highly toxic heavy metals 
besides nitrogen fixation (Zheng et  al. 2005). It has been demonstrated that R. 
leguminosarum bv. phaseoli strains can be specifically used for the phosphate solu-
bilization. However, symbiotic properties of the leguminous plants could be 
decreased because of high concentrations of heavy metals drastically decreasing 
the number of rhizospheric rhizobia. For bioremediation purposes, selected plant 
varieties must be resistant to d-block elements such as iron, zinc, manganese, etc. 
(Siripornadulsil 2013). The exploitation of rhizobial species for the rehabilitation 
of contaminated soil and the biochemical and molecular pathways involved in this 
mechanism provides better novel approaches of bioremediation strategies (Ying 
et al. 2015). This chapter revolves around the main theme of sustainable agricul-
ture by maintenance of nitrogen in agroecosystem by introducing natural fertilizers 
at the interest of plant growth and suitable crop management, hence the journey of 
rhizobia from lab to land for replenishing soil fertility to facilitate crop production. 
This has further paved ways for exploiting rhizobial mechanisms for future 
improvement in agro-strategies at the cost of research and development in the 
growing and powerful economies of the world.

7.2	 �Isolation of Rhizobium from the Soil and Culturing 
in Lab

Firstly, the nodules were washed under the running tap water in order to remove 
the anchored soil particles adhered to the nodules. Then the nodules were dipped 
in 0.1% of HgCl2 solution for 30  s and were washed 2–3 times with sterilized 
distilled water to remove the traces of toxic HgCl2. Surface-sterilized nodules 
were transferred into test tube containing 5 ml of sterilized distilled water. These 
nodules were crushed with the help of rod to obtain a milky suspension. Further 
yeast extract mannitol agar (YEMA) + Congo red was prepared and heat sterilized 
by autoclaving. After that, the serial dilution 1 g of nodular extract was taken; it 
was mixed with 10 ml of sterile distilled water to obtain the nodular extract sus-
pension (i.e., 1 ml of suspension was diluted with 9 ml of distilled H2O making 
dilution to 10−1). This step was repeated up to eight to ten times, and then YEMA 
was put into sterilized petri plates and kept for a while for solidification. The 
inoculums were spread using spreader, finally incubated for 4–7 days at 37 °C in 
the incubator.
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Sample collection 

Wash it under running water 

Dip the solution in 0.1% HgCl2

and then proceed to serial dilution  

Wash with sterile distilled H2O for 2-3 

Crush the Root nodules with the help of glass 

Inoculate on YEMA+ Congo red media (Autoclaved) on petriplates   

Incubate it for 4-7 days at 37°C

Take nodular extract (1ml+10 ml H2O)

Spread the inoculums by the 

Isolation of Rhizobium from soil in lab
 

7.3	 �Isolation of Rhizobium from the Leguminous Plant 
and Culturing in Lab

Leguminous plant is collected, and the nodules are separated to isolate rhizobia 
from them. 0.5 cm root is cut on each side of the root nodules and was washed by 
95% ethanol for 5–10 min and then immersed in the 0.1% sublimate solution for 
3–5 min and then washed with sterile distilled water five times, and finally the root 
nodules were crushed with the use of forceps. Next, the root nodules were grown on 
yeast mannitol agar media and Congo red and then incubated at 28 °C for 3–5 days. 
The colonies appeared and grew apart in petri plates and were then stained by gram 
dye for visualization under microscope (Gwyn 2006).
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Sample collection 

0.5 cm root is cut on each side of root nodules 

Treated with 95% C2H5OH for 5-10 

Immerse in 0.1% sublimate solution for 3-5 minutes  

Wash with sterile distilled H2O for 5 times

Crush the root nodules with the help of glass rod 

Grow root nodules on YEMA+ Congo red media on petriplates    

Incubate it for 3-5 days at 28°C

Colonies can be observed 

Stained by gram dye 

Visualization under microscope 

Isolation of Rhizobium from leguminous plant in lab 
 

7.4	 �Confirmation of Rhizobium by Different Physiological 
Tests

There are different physiological tests related to Rhizobium sp. like salinity and 
acidity which have been given in Table 7.1.

7.5	 �Plant Growth-Promoting Characters of Rhizobium sp.

7.5.1	 �Auxin Production

Phytohormones or growth regulators of plants are organic substances synthesized in 
the specific plant organs that can be translocated to different parts of the plant that 
can trigger somewhat specific type of responses in the biochemistry, morphology, or 
physiology of the plant. In plants, auxins play a crucial role in division of cells and 
its differentiation, elongation, apical dominance, fruit development, and senescence, 
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while specifically the naturally occurring indole-3-acetic acid (IAA) plays a key 
role in root, leaf, and flower development (Phillips et al. 2011). About 80% of the 
soil bacteria are only able to produce the IAA, indole-3-butyric acid (IBA), or simi-
lar compounds as a product of the tryptophan metabolism. The IAA is a part of 
signaling and functions as a signaling molecule in microbes because it is reported 
that IAA influence gene expressions in few microbes. Thus IAA can act as a mole-
cule of signal in plant-microbe interactions. Rhizobia are able to undergo symbiosis 
with the leguminous plants leading to root nodule formation due to the high abun-
dance of bacteria in the nearby rhizosphere and in the cavity of the roots. These 
groups of microorganisms are able to secrete different types of hormones, mainly 
auxin, enhancing the growth of the roots. This is exemplified by the production of 
high amounts of IAA (99.7% μg/ml) by Rhizobium sp. that colonize the root nod-
ules of leguminous plants like Cajanus cajan, when grown in basal medium sup-
plied by L-tryptophan. Further studies revealed that the IAA production could be 
doubled up to 65.3% over control by supplementing a medium with 5 g/l of glucose, 
10 μg/ml of NiCl2, and 0.5 g/l of glutamic acid (Zahir et al. 2010).

7.5.2	 �Mechanism of IAA Biosynthesis by Bacteria

The indole-3-acetic acid biosynthesis in bacteria is either tryptophan-dependent or 
tryptophan-independent. The pathogenic bacteria such as Pseudomonas and 
Agrobacterium produce IAA via the indole-3-acetamide pathways. In Agrobacterium, 
the indole-3-pyruvic acid (IPA) pathway functions in similar ways in both plants 
and bacteria. Initially, the L-tryptophan is deaminized by an aminotransferase 
enzyme to IPA. Subsequently, decarboxylase enzyme converts the IPA into indole-
3-acetaldehyde (IAAld), which is finally oxidized to IAA by aldehyde oxidase 
(Fig. 7.1) (Rajagopal 1971; Pollmann et al. 2006).

There is an alternative pathway which exists where tryptophan is directly 
converted into IAAld by a tryptophan side chain monooxygenase enzyme, which is 

Table 7.1  Salinity and acidity test for different strains of Rhizobium

Salinity test Acidity test

Strains of Rhizobium
Inhibitory concentration of 
NaCl with glycine betaine Strains of Rhizobium pH

R. melitotis Positive Rhizobium sp. 4.0–7.0
R. japonicum Negative Azorhizobium 4.0–7.0
R. trifolii Negative Bradyrhizobium 4.0–7.0
R. leguminosarum Negative R. tropici 4.0
Azorhizobium 
caulinodans

Negative R. tropici 4.25

Rhizobium sullae Positive Bradyrhizobium 4.25
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known as the tryptophan side chain oxidase pathway (Oberhansli et al. 1991). The 
ipdC gene encodes for the indole pyruvate decarboxylase enzyme, which catalyzes 
the important step in the IPA pathway (Patten and Glick 2002). The indole-3-
acetamide (IAM) pathway is seen mainly in phytopathogenic bacteria, although it 
does occur in photosymbiotic bacteria as well (Kochar et al. 2011). In this pathway, 
IAA is produced in two step reaction with the tryptophan precursor. Firstly the 
enzyme is tryptophan 2-monooxygenase, which converts the tryptophan to the IAM 
intermediate, and the second reaction is further catalyzed by an IAM-specific hydro-
lase or amidase, which hydrolyzes the IAM to IAA (Fig. 7.2) (Pollmann et al. 2006).

7.5.3	 �Cytokinin Production

A number of bacteria from plant rhizosphere including PGPR and phytopathogenic 
bacteria produce cytokinins (Zakhia et al. 2006). Cytokinin is involved in the func-
tion of cell division, chloroplast differentiation, and transport of metabolites, also 
retards senescence of leaf and induces stem morphogenesis in roots, and also con-
trols the functions of organs present on the aboveground. In rhizobia, cytokinin 
leads to nodule development as essential to initiate the cortical cell division to form 
root nodule and may also mediate the rhizobial infection in legumes (Frugier et al. 
2008). Oldroyd (2007) reported that the production of cytokinin in plants is enhanced 
by rhizobia through regulation of the different Nod factors pathway, acting as a 
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mechanism to coordinate in between the epidermal and cortical response during 
nodulation. The cytokinin produced stimulates cell division in soybean in tissue cal-
lus grown in vitro and induces polyploidy during mitosis in the cultured pea root 
segments.

7.5.4	 �Ethylene Production

Ethylene, a gaseous hormone endogenously produced by most of the plants, plays a 
major role in inducing fruit ripening, germination of seed, tissue differentiation, and 
formation of root and shoot primordium besides flower wilting, lateral bud develop-
ment, abscission of leaves, and response to both abiotic and biotic stresses in plants 
(Abeles et  al. 1992). Hence to allow the standard growth and development, the 
production of ethylene in plants tissues is also essential (Safronova et  al. 2006). 
Levels of plant’s ethylene are modulated by 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase and also by the production of the ACC synthase enzyme inhibitor 
rhizobitoxine. Some rhizobacteria are able to decrease the level of ethylene in plant 
roots and shoots by cleaving ACC to NH3 and α-ketobutyrate by the enzymatic 
action. Rhizobium leguminosarum, ACC deaminase-producing bacteria, produces 
the enzyme to reduce ethylene biosynthesis in plants, which functions by degrading 
ACC, precursor to ethylene, thereby enhancing root growth (Glick et  al. 1998). 
Experiments suggest that ACC deaminase in R. leguminosarum bv. viciae enhances 
the process of nodulation of Pisum sativum L. cv.
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7.5.5	 �Mechanism of Nitrogen Fixation in Rhizobia

Rhizobium infects the roots of leguminous and nonleguminous plants like Parasponia 
(of family Cannabaceae) and leads to the formation of nodules. The enzyme system 
of bacterium furnishes reduced nitrogen as ammonia to the host plant as a constant 
source resulting in the fulfillment of plant nutritional levels, while the host provides 
the rhizobia shelter and a homeostatic environment to undergo heterotrophic multi-
plication by utilizing photosynthates (a carbon source) and micronutrients (Mo, S, 
Fe, etc.). This exchange mechanism has drawn the attention of socio-microbiologists 
who study the evolution of mutualistic behavior of rhizobia in trading, diplomacy, 
and warfare (Alice et al. 2017). It is familiar to us that the free-living rhizobia are 
unable to fix nitrogen due to a different shape (different from the bacteria found in 
the root nodules) and require a multitude of mechanisms involving gene regulation 
and expression of several factors to achieve nodulation.

7.5.5.1	 �Root Nodule Formation
Rhizobial strains can infect the various species of leguminous plants like pea, beans, 
soya bean, chickpea, alfalfa, etc. leading to nodulation due to the specificity of 
genes that determine the compatibility between specific rhizobial strains with the 
particular leguminous plants. The nodulation is regulated by highly complex chemi-
cal signaling in between both the plant and the bacteria.

The interaction between the host plant and free-living rhizobia leads to the 
release of chemicals by the root cells into the soil, and some of these chemicals 
encourage the growth of the bacterial population in the area around the roots. 
Reactions occur in the bacterial cell wall and the root surfaces which are responsible 
for the mutual recognition and anchorage by the bacteria to root hairs. Flavonoids 
secreted by the cells of root induces the nod D protein in bacteria which binds to the 
highly conserved sequence in nod gene promoters termed as the nod box that acti-
vates the nod genes. As a result, the nod gene produces nod proteins which conse-
quently activate the different nod factors in the bacteria which induce the nodule 
formation (Fig. 7.3).

The bacteria produce nod factors, and these stimulate legume roots to be curled 
up; hence rhizobia invade the root through its hair tips forming infection thread that 
grows up with the help of root hair cells and penetrates adjoining tissues by branch-
ing. As a result bacteria start to multiply within the expanding network of the tubes, 
and in continuation it produces nod factors which stimulate the root cells to prolifer-
ate and eventually form a root nodule. Each root nodule consists of thousands of 
living Rhizobium bacteria, collectively called bacteroids. The portions surrounding 
the bacteroids are basically structures called as symbiosomes, which contain bacte-
roids where the nitrogen fixation occurs. Nitrogen fixation by rhizobia occurs fol-
lowing a series of events. Starting from multiplication and colonization at the 
rhizospheric soil, the attraction between the host and bacteria is chemotactic in 
nature, induced by the root exudates like different amino acids and sugars leading to 
attachment of bacteria to epidermal root hair cells (Brewin 1991). Next the charac-
teristic curling of root hairs and invasion of the bacteria to form infection thread by 
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penetration of plasma membrane of root hair cell are observed. Rhizobia reach up 
to the root cortex, and thus curling occurs due to the specific complex polysaccha-
rides which are present on rhizobia and sensed by lectins. The nodule formation 
occurs due to the mitogenic agents such as kinetin produced by auxin to promote 
cell division and extension. Finally bacteria are released from the thread, and they 
differentiate as the specialized nitrogen-fixing cells in soil. As a result the infection 
thread gets budded off to form small vesicles containing almost two or more bacte-
ria which stops division and enlarge to get differentiate.

7.5.5.2	 �Nitrogenase Enzyme
Nitrogenase is a complex enzyme that plays pivotal role in the conversion of 
nitrogen gas into ammonia by nitrogen-fixing organisms. It consists of two proteins: 
a homodimeric reductase Fe protein, the structural subunits of which are encoded 
by the nifH gene, and the other heterotetrameric catalytic component called MoFe 
protein, encoded by the structural genes nifD and nifK (Seefeldt et al. 2009; Burgess 
and Lowe 1996). Transfer of every electron from the Fe protein to the FeMo protein 
requires two ATP molecules that hydrolyzed to ADP + Pi in the presence of Mg2+ 
ions. The products of the translational process are structural nif H,D,K genes 
required for processing by other nif gene products before becoming active. 
Nitrogenase enzyme contains FeMo-co three metallocomplex which involved in the 
catalytic site for nitrogen reduction and consist of an organic moiety like Mo Fe7 S9 
C-homocitrate (Rubio and Ludden 2008; Hu and Ribbe 2013). There are other two 
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metalloclusters: one is a (8Fe-7S) which is located in the MoFe protein, and the 
other is (4Fe-4S) cluster present in the Fe protein and the P cluster. These two metal-
loclusters are involved in the transfer of an electron from the Fe protein to the 
FeMo-co catalytic site via the P cluster (Seefeldt et al. 2012). On the basis of bio-
chemical complexity, a large number of nif genes are crucial for the assembly of this 
and act as the function of nitrogenase. The important feature of nitrogenase enzyme 
is its sensitivity toward oxygen. As a result the protein is damaged by oxygen, while 
the MoFe protein is relatively insensitive to this. Conformational changes take place 
in enzyme, and as a result it becomes insensitive toward oxygen. In order to protect 
this condition, there is presence of oxygen scavenging operating process for which 
high respiratory activity takes place; as a result enzyme becomes modified to cata-
lytically active form. However, in the free-living organisms and anaerobic nitrogen-
fixing bacteria, such type of problems didn’t occur. Aerobic bacteria have a variety 
of various mechanisms for protecting the nitrogenase complex, such as metabolic 
activity. Rhizobium controls the oxygen level in the nodule with leghemoglobin, and 
this red color, iron-containing protein has a similar function as that of hemoglobin. 
This provides sufficient oxygen for the metabolic processes of the bacteroids but 
prevents the accumulation of free oxygen which will destroy the nitrogenase 
activity.

7.5.6	 �Siderophore Production

Siderophores are small-sized, high-affinity iron-chelating compounds, secreted by 
microorganisms as well as plants in the environment which mediates iron transport 
across cell membranes. Siderophores are the strongest soluble Fe3+-binding agent 
which is known. When the cellular iron concentration is less than 0.1 μm, the iron-
assimilating system gets expressed in all the aerobic and the facultative anaerobic 
microorganisms (Neilands 1981). Thus it may be concluded that siderophore-
producing bacteria can provide plants with iron either directly by improving the iron 
nutrition or indirectly by inhibiting the growth of pathogens in the rhizosphere 
which limits availability of rhizospheric iron for plants (Glick 1995). Iron exists in 
two forms in nature, the divalent (ferrous or Fe2+) or trivalent (ferric or Fe3+) form, 
determined by the pH and the redox potential of the soil (Bodek et al. 1988). Fe3+ 
ions are reduced into Fe2+ ions and released into the cells of rhizobacteria, and this 
reduction results in the destruction or recycling of siderophores (Rajkumar et al. 
2010). It has been reported that Rhizobium nepotum isolated from stem nodules of 
Aeschynomene indica produced siderophores, inferred by its growth producing 
orange to yellow halo in chrome azurol sulfonate (CAS) agar medium (Ghorpade 
and Gupta 2016). Siderophores form stable complex with the heavy metals such as 
Al, Cd, Cu, etc. which give advantage to some siderophore-producing bacteria to 
remove heavy metals from soils and help in iron uptake of plants (Neubauer et al. 
2000). Rhizobial species, such as R. meliloti, R. leguminosarum bv. viciae, R. legu-
minosarum bv. trifolii, R. leguminosarum bv. phaseoli, Sinorhizobium meliloti, and 
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Bradyrhizobium sp., were known to produce the siderophores (Antoun et al. 1998; 
Arora et al. 2001; Carson et al. 2000). Rhizobium strain BICC 651, a fast-growing 
strain, isolated from the root nodules of the chickpea (Cicer arietinum L.), produces 
catechol siderophores in order to respond under iron-deficient conditions (Roy et al. 
1994), similar to other catechol siderophore-producing microorganisms. Structurally, 
the siderophore produced by Rhizobium BICC 651 contains 2,3-dihydroxybenzoic 
acid used as a core compound with two moles of threonine which act as a ligand. 
Rhizobium leguminosarum bv. viciae (Carter et al. 2002) and S. meliloti 1021 sp. 
(Lynch et  al. 2001) also produce siderophores which are not of catechol type. 
Catecholate siderophores were isolated from Rhizobium leguminosarum bv. trifolii 
(Skorupska et al. 1989), Rhizobium ciceri (Roy et al. 1994), Bradyrhizobium spe-
cies (cowpea) (Modi et al. 1985), and Bradyrhizobium species (peanut) (Nambiar 
and Sivaramakrishnan 1987) where the biosynthetic genes have not been investi-
gated and yet to be studied.

7.5.7	 �Phosphate Solubilization

Nitrogen and phosphorus are only macronutrients for the plant growth that exists in 
both inorganic and organic forms. The bioavailability of phosphorus in the plants is 
influenced by the pH, compaction, aeration, moisture, temperature and organic mat-
ter of soils and secretion of root exudates. Soil microbes help in the release of phos-
phorus that is absorbed only in the soluble form like monobasic (H2PO4

−) and 
dibasic phosphate (H2PO42-) (Bhattacharya and Jha 2012). Phosphorus accounts 
about 0.2–0.8% of the dry weight, but only 0.1% of this phosphorus is available for 
plants from the soil (Zhou et al. 1992). In the myriad of essential elements, phos-
phorus (P) (although abundant in soils in both inorganic and organic forms) is one 
of the major macronutrients among plant growth-limiting factors, which is solubi-
lized by the strains belonging to the genera Rhizobium and is among the most pow-
erful phosphate solubilizers besides Bacillus and Pseudomonas (Chabot et al. 1998).

Rhizobia species including R. leguminosarum, R. meliloti, M. mediterraneum, 
Bradyrhizobium sp., and B. japonicum are the potential phosphate solubilizers 
(Afzal and Bano 2008; Egamberdiyeva et al. 2004; Rodrigues et al. 2006). These 
bacteria synthesize organic acids with low molecular weight. For instance, 
2-ketogluconic acid having phosphate-solubilizing abilities has been identified in R. 
leguminosarum (Halder et al. 1990) and R. meliloti (Halder and Chakrabarty 1993). 
There had been instances of M. mediterraneum usage for the purpose of phosphorus 
solubilization to enhance the plant growth in the chickpea and barley (Peix et al. 
2001). In lettuce and maize, it was demonstrated that R. leguminosarum bv. phaseoli 
strains specifically solubilize phosphates as PGPR. This has considerably helped in 
the sustainable agricultural practices of the abovementioned crops by the phosphate-
solubilizing root microbiota comprising of rhizobial population.
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7.6	 �Application of Rhizobia

7.6.1	 �Biocontrol Agent

Rhizobia improve the plant growth through biocontrol such as antibiosis, parasitism, 
or competition with pathogens for nutrients by inducing the systemic resistance in 
between the host plant. Some Rhizobium sp. has shown further antimicrobial 
activities toward fewer species such as Pseudomonas savastanoi (Kacem et  al. 
2009), Rhizoctonia solani, Fusarium oxysporum, Fusarium solani f. sp. phaseoli 
(Buonassisi et  al. 1986), Pythium sp. (Bardin et  al. 2004; Huang and Erickson 
2007), and F. solani (El-Batanony et al. 2007) with the varying degrees of growth 
inhibition too. Studies on numerous plant-microbe interactions have shown that 
such antagonistic rhizobacteria could function by producing antimicrobial com-
pounds such as bacteriocin (Rodelas et al. 1998; Joseph et al. 1983) and induce the 
systemic resistance against plant diseases. Antagonistic activity of rhizobia is 
mainly attributed to the production of antibiotics, HCN, mycolytic enzymes, and 
siderophore under iron deficiency.

Thus the use of Rhizobium sp. shows beneficial outcomes in modern intensive 
agricultural practices. Rhizobium japonicum have been used as a biocontrol agent 
for the soybean’s root rot disease caused by soilborne Fusarium solani and 
Macrophomina phaseolina, respectively. It has been experimentally seen that the 
filtrate of rhizobial culture causes an inhibition of growth of Macrophomina pha-
seolina on potato dextrose agar medium. Rhizobia have been reported to enhance 
the expression of plant defense-related genes, effectively showing the immunization 
of the plants against pathogens. Biocontrol of the root-knot nematode of M. javan-
ica was studied on lentil using different PGPR including Rhizobium sp. (Siddiqui 
et al. 2007). Induced systemic resistance can be induced in plants by biopriming 
plants with PGPRs like rhizobia to allow the plant to combat several pathogenic 
fungal, bacterial, and viral interactions which may hinder plant growth on prolonged 
exposure.

7.6.2	 �Phytoremediation

Resistant rhizobial strains are used for the phytoremediation of metals directly by 
following processes such as chelation, precipitation, transformation, and accumula-
tion. Microbe-assisted phytoremediation emerges as one of the most effective means 
through which plants and their associated rhizospheric microbes begin to take up or 
degrade metals as exemplified by a pot culture study, conducted for examining the 
inoculation with R. meliloti in alfalfa, grown for almost 90 days in an agricultural 
soil contaminated by weathered polycyclic aromatic hydrocarbons (PAHs). The 
results suggested that the symbiotic association between the alfalfa and Rhizobium 
can reduce the contamination. However, the legume-rhizobia symbiosis process is 
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said to be more sensitive to metals (Hao et al. 2014). For example, it was observed 
experimentally that there was a reduction in the population of R. leguminosarum bv. 
trifolii which is able to undergo processes such as symbiosis with white clover 
(Trifolium repens L.) grown in polluted soil with metals (McGrath et al. 1988). The 
rhizobium-legume interaction has been used to remediate soils contaminated with 
arsenic and other metals (Pajuelo et al. 2001; Mandal et al. 2008). Commercialized 
cultivations with legume alfalfa in the world may have potential and effectiveness 
for the remediation of a number of organic contaminants mainly due to its ability to 
grow and take up heavy metals in low pH soils (Peralta and Ramon 2002). In further 
studies, the rhizobial species, isolated from the nodules of green gram 
(Bradyrhizobium sp.), lentil (Rhizobium sp.), chickpea (Mesorhizobium sp.), and 
pea (Rhizobium sp.), have shown greater tolerance toward one or few metals. Wani 
and Khan (2013) isolated a strain RL9 possessing not only high tolerance to several 
heavy metals but also having plant growth-promoting traits, such as production of 
IAA and siderophores. It was found that lentil plants inoculated with this strain had 
higher growth and development, chlorophyll content, leghemoglobin, nitrogen con-
tent, seed protein, and yield compared to that of other plants grown in the absence 
of bioinoculant when grown in the presence of Ni2+.

7.6.3	 �Plant Growth Promotion and Yield of Crops

PGPR are free-living soilborne bacteria that aggressively colonize the plant roots 
which when applied to seed or crops enhance the growth and yield of plants 
(Kloepper et  al. 1980). Various species of soilborne bacteria in the rhizosphere 
enhance plant growth by multiplication in soil as well as plant tissue, rhizobia being 
an eminent example. The investigation of the modes of action of rhizobia is increas-
ing as they are commercially exploited as biofertilizers. These modes of action 
include only the nitrogen fixation, increasing the nutrient availability in the rhizo-
sphere, stimulating root growth and morphologic development, and also promoting 
other beneficial plant-microbe symbioses. Biswas (1998) concluded the increment 
in the N uptake by rice (Oryza sativa) plants inoculated by rhizobia. This plant 
response is significantly because of the effective and potential importance to sus-
tainable agriculture, especially in cropping systems involving rotations of rice and 
legumes, and they are also found in banana which is produced by inoculation (Mia 
et al. 2005). The separate application of the L-TRP and Rhizobium itself appeared 
to mitigate the adverse effects caused by the salt stress. However, their combined 
application produced different as well as huge effects and increases the plant height 
by (28.2%), a number of nodules per plant (71.4%), biomass (61.2%), yield (65.3%), 
and N2 concentration (22.4%) compared with untreated control. The growth promo-
tion may get effected by the higher auxin production in the rhizosphere and improves 
the uptake of mineral which reduces the adverse effects of salinity stress (Table 7.2).
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7.7	 �Conclusion and Future Prospects

Environmentally sustainable nitrogen fixation and other important rhizobial 
functions for increase in crop yield to allow rhizobia from lab to land is the main 
concept of discussion in this chapter. Rhizobia act as a class of eco-friendly 
microbiota by renewing levels of rhizospheric nitrogen and supplementing plants 

Table 7.2  Effect of Rhizobium strains on various crops for plant growth

Rhizobium sp.
Crop 
species

Growth 
condition Remarks References

R. tropici 
co-inoculated with 
Paenibacillus 
polymyxa

Kidney 
bean

Greenhouse Increase nodule number, 
enhanced plant height as 
well shoot dry weight

Figueiredo 
et al. (2008)

R. elti (engineered 
for enhanced 
trehalose-6-
phosphate synthase)

Kidney 
bean

Pot studies Enhanced nodules, 
nitrogenase activity and 
biomass production, 
higher tolerance than 
wild-type strains

Suárez et al. 
(2008)

Rhizobium sp. 
DDSS69

– In vitro Induction of 135 and 
119 kDa proteins. 
Variation in the protein 
profile of stressed and 
nonstressed cells

Sardesai and 
Babu (2001)

Rhizobia strains Lentil Field study More nodule formation 
and increased nodule dry 
weight and plant biomass

Islam et al. 
(2013)

Rhizobium RL9 Lentil Pot 
experiments

Increased growth, 
nodulation, chlorophyll, 
leghemoglobin, nitrogen, 
seed protein, and seed 
yield

Wani and Khan 
(2013)

R. leguminosarum Maize Pot 
experiments

Enhanced plant growth 
and biomass

Hadi and Bano 
(2010)

Rhizobium 
leguminosarum bv. 
trifolii

Rice Greenhouse 
and field

Increased grain yield and 
shoot/root weight

Tran Van et al. 
(2000)

R. vietnamiensis
R. leguminosarum Rice Pot culture, 

glasshouse
Increased yield, grain 
size, and biomass

Hussain et al. 
(2009).

R. trifolii Wheat Pot trials Increased wheat shoot dry 
matter and grain yield

Hilali et al. 
(2001).

R. etli bv. phaseoli Maize Gnotobiotic Increased total biomass Gutierrz-
Zamora and 
Martinez-
Romero (2001)

R. trifolii Maize Greenhouse, 
field

Increased yield Riggs et al. 
(2001)
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with their required levels of the element in suitable absorbable forms. This is 
initiated by plant-rhizobia interaction, an important paradigm in plant-microbe 
signaling which is enabled by the number of genes encoding signals for sequence of 
plant responses. The dire need of specific gene sequences has led to sequencing of 
rhizobial genome of Rhizobium sullae-type strain IS123T (phylogenetically found to 
be closely related to Rhizobium etli and Rhizobium leguminosarum) to obtain 
7,889,576 bp reads. This strain endowed with a rich array of symbiotic genes than 
other strains is hence focused to compare the genome with other members of 
Rhizobiales (Sablok et  al. 2017). Thus several active gene sequences and their 
functions need to be elucidated for exploiting rhizobial strains for contribution to 
crop improvement.

Rhizobia can synergistically function with other soil microbiota like 
Pseudomonas, Azospirillum, Azotobacter, Bacillus, etc. Studies have been demon-
strated in lentils with co-inoculation of Pseudomonas sp. with Rhizobium legumino-
sarum under suitable field conditions, and finally increase in grain yield was noted. 
Rhizobium along with other PGPRs like Pseudomonas fluorescence has been also 
used to determine nitrogen and phosphorus content in the grains. Thus several such 
studies to find enhancement of synergistic action of rhizobia with other strains must 
be encouraged. Commercialization of PGPR can be achieved by studying several 
factors like market demand, broad-spectrum action, easy availability, and low capi-
tal cost for mass production using fermentation methods, formulation and viability, 
safety and stability, and longer shelf life. Bioformulation of rhizobia is achieved by 
designing superior carrier materials with high water holding capacity, biodegrad-
able nature, and nontoxic, chemically uniform material that support bacterial 
growth. Several ongoing research on rhizosphere biology lead to the need for rhizo-
bacteria with potassium-solubilizing abilities in plants. Potassium which is the third 
most important macronutrient for plant growth is limited by phytotoxic environ-
ment. The use of rhizobia to compensate such loses by rhizo-engineering and trans-
genic bacteria release to optimize plant growth promotion is another 
thought-provoking aspect of future research. Thus to conclude, rhizobia can be used 
as an effective PGPR tool for an alternative to agrochemicals after ensuring ecosys-
tem biosafety of arable lands. The USA, Australia, and several other European 
economies have hence focused on rhizobial transfer from lab to land for better agri-
cultural management to contribute toward improved crop production.
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Abstract
The sustainable plant disease management includes the use of beneficial microbes 
for the effective and sustained production of crop/plants. Numerous species of 
soil bacteria/rhizobacteria and fungi exist in the rhizosphere of plants which can 
counteract the pathogenic organisms and stimulate plant growth through direct/
indirect mode of action. The plant growth-promoting rhizobacteria (PGPRs), 
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viz., Pseudomonas, Bacillus, and Streptomyces, have been well exploited by sci-
entists for the management of plant diseases in economically important agricul-
tural and horticultural crops. In nature, interactions between the pathogenic and 
beneficial microbes take place which decides the existence of the pathogen in the 
rhizosphere region. Interaction of PGPR with pathogens in the rhizosphere may 
lead to an expression of innate immune response of defense genes in the plants 
which can counter the pathogen infection. This review helps in understanding the 
dynamics and existence of PGPR in the soil, their role in disease management, 
and their interaction with the pathogens which explore the possibility of identify-
ing new proteins/genes in host-pathogen interaction. In addition, commercial 
production of bioagents with the suitable carrier material and delivery system 
play a major role in managing plant diseases under field conditions. The explora-
tion for PGPR and study of their modes of action are escalating at a rapid pace, 
as efforts are made to exploit them commercially as bioinoculants.

Keywords
Antibiosis · Bacillus sp. · Competition · Induced systemic resistance · Lytic 
enzymes · Pseudomonas sp.

8.1	 �Introduction

Sustainable agriculture practices involves soil health maintanence, usage of mini-
mal water, and minimize the pollution level in the environment which subsequently 
increases the food grain production in the country. During the cultivation of crops, 
biotic stress caused by plant pathogens is a major concern which incurs huge eco-
nomical loss to the farmers. Various agrochemicals are being utilized by the farmers 
for the management of the diseases caused by plant pathogens. However, their use 
is increasingly restricted due to public concerns over toxic residues, development of 
resistance in the pathogens, and increased expenditure for plant protection. 
Exploitation of microbe-based management will be an alternative approach to con-
trol this disease. In nature, soil harbors numerous beneficial microorganisms with 
potential genes for governing resistance and promoting plant growth which can be 
well exploited for managing the plant diseases. The PGPR is currently applied in an 
extensive array of agri- and horticultural production systems in the form of bioin-
oculants in a variety of economically significant plants including cereals, millets, 
pulses, oilseeds, fiber crops, sugar crops, fruits, vegetables, medicinal crops, spices, 
condiments, ornaments, fodder, and cash crops for augmenting their growth and 
productivity. Free-living, nonpathogenic, root-colonizing bacteria have been stud-
ied for the past century as possible inoculants for increasing plant productivity 
(Kloepper et al. 1992).

In the last few decades, a large array of bacteria including species of Alcaligenes, 
Aeromonas, Azotobacter, Arthrobacter, Azoarcus, Azospirillum, Acinetobacter, 
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Agrobacterium, Aneurinibacillus, Bacillus, Beijerinckia, Burkholderia, 
Gluconacetobacter, Gluconobacter, Herbaspirillum, Paenibacillus, Pseudomonas, 
Rhizobium, Rhodococcus, Saccharothrix, Serratia, Thiobacillus, and Variovorax 
are considered as important PGPR (Dobbelaere et  al. 2003; Crepin et  al. 2012; 
Annapurna et al. 2013). These effective rhizobacteria are used in sustainable agri-
culture as biofertilizers and biocontrol agents (Babalola 2010). Several studies have 
depicted proteobacteria especially bacteria from family Pseudomonadaceae or 
Burkholderiaceae as dominant members of rhizosphere microflora in field condi-
tions (Peiffer et al. 2013).

Rhizobacteria can survive in soil or seed, multiply in the spermosphere in 
response to seed exudates, get attached to the root surface (Suslow 1980), and later 
become endophytic by colonizing in root cortex region. They are sporadically dis-
persed along roots and are distributed in a lognormal pattern in the rhizosphere 
(Bahme and Schroth 1987). Various PGPR strains screened under laboratory, green-
house, and field conditions against phytopathogens have been commercialized. The 
commercially utilized efficient PGPR strains include species of Agrobacterium, 
Azospirillum, Azotobacter, Bacillus, Burkholderia, Delftia, Paenibacillus, Pantoea, 
Pseudomonas, Rhizobium, and Serratia (Glick 2012). Although various strains of 
PGPR have been isolated, there is a gap in identification of efficient crop-specific 
strain with good colonizing ability possessing antagonistic and growth-promoting 
genes. Also, the type of formulation used for mass multiplication of these biocontrol 
agents is more important which will help to establish itself in the field for a consid-
erable period of time.

The molecular markers, of late, can be utilized for identification and screening of 
the efficient strain in a short span of time. Besides, understanding the mode of action 
of PGPR through genomic and proteomic approaches will help in depicting its role 
in plant disease management. With this background, this review will address the 
major PGPR strains utilized in agricultural and horticultural crops for plant disease 
management, highlight the various mode of action exhibited by these beneficial 
bacteria against soilborne diseases, and also discuss on the various bioformulations 
used for the management of plant diseases which will pay a way for sustainable 
agriculture.

8.2	 �PGPR in Plant Disease Management

PGPRs are the distinct group of microbes that suppress the deleterious pathogens in 
crop plants. The genera normally used as biocontrol agents are Agrobacterium, 
Bacillus, Burkholderia, Pseudomonas, Streptomyces, etc. Among the diversity of 
PGPR, Pseudomonas and Bacillus spp. have a wide distribution and are the exten-
sively studied genera for PGPR as a biocontrol. In particular, the soilborne fluores-
cent pseudomonads have received particular interest due to its excellent 
root-colonizing abilities and their capacity to produce a wide range of antifungal 
metabolites (Olivain et al. 2004). These organisms combat the plant disease by com-
petition, enzymatic lysis, production of antibiotics, hydrogen cyanide, siderophores, 
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induced systemic resistance (ISR), or any other mechanisms. The rhizosphere soil 
is an active site with complex interactions between the root and the associated 
PGPR (Sylvia et  al. 1998). At this point, the PGPR enhances plant growth and 
development by direct and/or indirect mechanisms. Direct mechanisms elicit growth 
promotion by biological nitrogen fixation (BNF), production of hormones such as 
indole-3-acetic acid (IAA), gibberellic acid (GA3), cytokinin and phosphate, potas-
sium and zinc solubilization or mobilization (Idris et al. 2008), production of sid-
erophores for sequestering of iron (Fe) from the soil and supply it to the plants and 
synthesis of hydrogen cyanide, etc. (Keel and Defago 1997). Some strains improve 
the innate ability to tolerate the stresses like acidity, salinity, drought, etc., besides 
production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme to 
lower the ethylene synthesis and synthesis of fungal cell wall lytic enzymes.

Secondly, indirect mechanisms include suppression of harmful/deleterious rhi-
zosphere microbes through induced systemic resistance (ISR), which are normally 
recognized as having a role in biocontrol (Dobbelaere et al. 2003). Induced systemic 
resistance is based on the activation of plant defense mechanisms by rhizobacterial 
strains and is considered natural, eco-friendly, and safe besides providing resistance 
against a broad spectrum of pathogens (Sticher et al. 1997). The rhizobacteria need 
to colonize the roots to a sufficient level for induction of resistance in the host. For 
example, in radish, a minimal number of 105 colony-forming units (cfu) per g root 
of bacteria is required to induce resistance in the host (Raaijmakers et al. 1995). 
Colonization of plants by biocontrol agents induces cell wall modifications, viz., 
deposition of callose, pectin, cellulose, and phenolic compounds leading to the for-
mation of a structural barrier at the site of potential attack by phytopathogens 
(Benhamou et al. 2000). Defense reaction occurs due to accumulation of PR pro-
teins (chitinase, β-1,3-glucanase), phenylalanine ammonia lyase, peroxidase, phe-
nolics, callose, lignin, and phytoalexins (Harish et al. 2009b).

The successful establishment of an introduced PGPR depends on its compatibil-
ity/establishment with the crop and also on its interaction with indigenous micro-
flora. An ideal PGPR should be rhizosphere competent, enhance plant growth, be 
easy to mass multiply, possess broad spectrum of action, have consistent biological 
control activity, be safe to the environment, and be compatible with other rhizobac-
teria (Nakkeeran et al. 2005; Barea, 2015). Therefore, identification of a functional 
PGPR strain possessing the growth-promoting and broad-spectrum biocontrol 
activity is an ever-challenging one. Utilization of molecular tools to identify the 
antibiotic biosynthetic genes, quorum quenching/sensing genes, and growth-
promoting genes in PGPR will pay way for the selection of efficient microbes in a 
short span of time (Fig. 8.1). Besides, updating the knowledge on the utilization of 
PGPR for plant disease management is the need of the day. This review, therefore, 
will focus on some novel and highly utilized PGPR in disease management with 
special reference to the genera Pseudomonas and Bacillus.

Various research groups throughout the world have utilized PGPR strains that 
were found to be successful in combating the major diseases of field and horticul-
tural crops (Kloepper and Schroth 1978) through direct/indirect mode of action 
along with plant growth promotion activity (Tables 8.1 and 8.2). The enhancement 
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of plant growth by PGPR indicates their potential as biofertilizers and biocontrol 
agents in the field of agriculture (Kloepper and Adesemaye 2009).

8.3	 �Plant Growth Promotion (PGP) Activities

The studies on the mechanism of growth promotion indicated that PGPR promotes 
plant growth directly by the production of plant growth regulators (PGR) or indi-
rectly by stimulating nutrient uptake, by producing siderophores or antibiotics to 
protect plants from soilborne pathogens or deleterious rhizosphere organisms 
(Kavino et al. 2010). Barea et al. (2005) reported phosphate-solubilizing bacteria 
(PSB) positive for IAA, GA3, and cytokinin production. Several isolates of 
Pseudomonas produced auxin or cytokinin and gibberellin.

Fluorescent pseudomonads increased the plant growth of rice and cotton by 
~27% and 40%, respectively, when the bacteria were applied to the seed (Sakthivel 
and Gnanamanickam 1987). Seeds treated with fluorescent pseudomonads resulted 
in increased number of tillers and grain yield in addition to control of sheath blight 
disease in rice (Mew and Rosales 1992). An increase in germination of ~30 to 60% 
in maize by plant growth-promoting strains of P. aeruginosa strain 7NSK2 and P. 
fluorescens ANP15 was observed by Hofte et al. (1991). Fluorescent Pseudomonas 
strains improved vegetative sett germination, plant height, cane diameter, brix val-
ues, and cane weight in sugarcane (Viswanathan and Samiyappan 1999). Indirect 

Fig. 8.1  Proposed model for PGPR-mediated plant growth promotion and disease management

8  Plant Growth-Promoting Rhizobacteria: Harnessing Its Potential for Sustainable…



www.manaraa.com

156

Table 8.1  Plant growth-promoting rhizobacteria in field crop diseases management

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Rice Magnaporthe 
grisea

Pseudomonas 
fluorescens, Bacillus 
polymyxa, P. fluorescens

Gnanamanickam and Mew 
(1992), Vidhyasekaran et al. 
(1997), and Karpagavalli et al. 
(2002)

Pyricularia oryzae P. fluorescens, Bacillus 
sp., Streptomyces 
sindeneusis, Bacillus 
amyloliquefaciens, 
Bacillus subtilis, Bacillus 
megaterium, Bacillus 
pumilus, Paenibacillus 
kribbensis, Pseudomonas 
aeruginosa, 
Pseudomonas putida

Krishnamurthy and 
Gnanamanickam (1998), 
Vidhyasekaran and 
Muthamilan (1999), 
Nandakumar et al. (2001), 
Kanajanamaneesathian et al. 
(2007), Yang et al. (2009), 
Zarandi et al. (2009), Guo and 
Liao (2014), Srivastava et al. 
(2016), and Rais et al. (2017)

Rhizoctonia solani P. fluorescens, B. subtilis Rabindran and Vidhyasekaran 
(1996) and Kumar et al. (2012)

Sarocladium 
oryzae

P. fluorescens, P. 
aeruginosa

Sakthivel and Gnanamanickam 
(1987) and Sunish kumar et al. 
(2005)

Xanthomonas 
oryzae pv. oryzae

P. fluorescens, P. 
aeruginosa, B. subtilis, 
Lysobacter antibioticus, 
Bacillus lentus, Bacillus 
cereus, Bacillus circulans

Vidhyasekaran et al. (2001). 
Velusamy and Gnanamanickam 
(2003), Ji et al. (2008), and 
Yasmin et al. (2016)

Wheat Tilletia laevis P. fluorescens McManus et al. (1993)
Helminthosporium 
sativum

P. fluorescens Ping et al. (1999)

Gaeumannomyces 
graminis var. tritici

P. fluorescens, 
Pseudomonas 
chlororaphis

Pierson and Thomashow 
(1992) and Mazzola et al. 
(2004)

Microdochium 
nivale

Pseudomonas 
brassicacearum

Levenfors et al. (2008)

Septoria tritici P. aeruginosa Flaishman et al. (1990)
Fusarium 
culmorum

P. fluorescens Khan and Doohan (2009)

Fusarium 
graminearum

Lysobacter enzymogenes Jochum et al. (2006)

Mycosphaerella 
graminicola

B. megaterium Kildea et al. (2008)

Barley Pythium ultimum P. fluorescens Gutterson et al. (1986)
F. culmorum P. fluorescens Khan and Doohan (2009)
Pyrenophora teres P. fluorescens Khan et al. (2010)

Maize P. ultimum, 
Pseudomonas 
arrhenomanes

Burkholderia cepacia Mao et al. (1998)

P. ultimum P. fluorescens Callan et al. (1990)
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Table 8.1  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Peronosclerospora 
sorghi

B. subtilis, P. fluorescens Sadoma et al. (2011)

Fusarium 
verticillioides

P. fluorescens, B. 
amyloliquefaciens

Nayaka et al. (2009) and 
Pereira et al. (2010)

F. culmorum P. fluorescens Khan and Doohan (2009)
Helminthosporium 
maydis

B. subtilis, B. cereus Lu et al. (2006) and Yun-feng 
et al. (2012)

Erwinia carotovora Bacillus thuringiensis Dong et al. (2004)
Stenocarpella 
maydis

B. subtilis, P. fluorescens, 
Pantoea agglomerans

Petatan-Sagahon et al. (2011)

R. solani B. subtilis Muis and Quimiob (2006)
Fusarium 
moniliforme

Bacillus sp., 
Pseudomonas sp.

Pal et al. (2001)

Sorghum P. ultimum P. fluorescens Idris et al. (2008)
Macrophomina 
phaseolina

P. chlororaphis Das et al. (2008)

Sclerospora 
graminicola

B. pumilus, B. subtilis Raj et al. (2003)

Erwinia carotovora 
subsp. atroseptica

P. chlororaphis Das et al. (2008)

Pearl 
millet

Sclerospora 
graminicola

P. fluorescens Umesha et al. (1998)

Ragi P. grisea P. fluorescens Vanitha (1998)
Foxtail 
millet

M. grisea P. fluorescens Karthikeyan and 
Gnanamanickam (2008)

Pigeon 
pea

Macrophomina 
phaseolina

P. fluorescens Siddiqui et al. (1998)

Fusarium udum Bacillus licheniformis Singh et al. (2002)
Chickpea P. ultimum B. pumilus, Streptomyces 

lydicus, Streptomyces 
griseoviridis

Leisso et al. (2009)

F. oxysporum f. sp. 
ciceri

P. aeruginosa, Bacillus 
macerans, B. megaterium

Anjaiah et al. (2003), Landa 
et al. (2004), and Saikia et al. 
(2006)

M. phaseolina P. putida, P. polymyxa Akhtar and Siddiqui (2007)
Rhizoctonia 
bataticola

P. fluorescens Ahamad et al. (2000)

Mung 
bean

M. phaseolina Burkholderia sp. Satya et al. (2011)

Soya bean P. ultimum P. putida Paulitz (1991)
Sclerotinia 
sclerotiorum

B. subtilis Zhang et al. (2011) and Zeng 
et al. (2012)

F. oxysporum B. subtilis Zhang et al. (2009)
F. graminearum
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Table 8.1  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Soyabean stunt 
virus

P. aeruginosa Khalimi and Suprapta (2011)

Groundnut S. rolfsii P. fluorescens Vanitha (1998), and Abd-Allah 
and El-Didamony (2007)B. subtilis

Aspergillus niger P. aeruginosa, 
Pseudomonas sp.

Kishore et al. (2005a) and 
Anjaiah et al. (2006)

Bacillus sp.
Aspergillus flavus B. megaterium Kong et al. (2010)
Puccinia arachidis P. fluorescens Meena et al. (1999)
M. phaseolina P. fluorescens Shanmugam et al. (2002)

Sesame P. ultimum P. polymyxa Ryu et al. (2006)
M. phaseolina P. fluorescens Jayashree et al. (2000)

Sunflower Plasmopara 
halstedii

B. pumilus Nandeeshkumar et al. (2008)

Sunflower necrosis 
virus

Streptomyces fradiae, B. 
licheniformis

Srinivasan and Mathivanan 
(2011)

Safflower M. phaseolina P. fluorescens Prashanthi et al. (2000)
Rapeseed S. sclerotiorum B. subtilis, P. 

chlororaphis
Fernando et al. (2007) and 
Yang et al. (2009)

B. amyloliquefaciens
Cotton P. ultimum Enterobacter cloacae, 

Acinetobacter 
calcoaceticus, P. 
fluorescens

Nelson (1988), van Dijk and 
Nelson (1998), and Hagedorn 
et al. (1990)

Verticillium 
dahliae

Pseudomonas sp., 
Serratia plymuthica

Erdogan and Benlioglu (2010)

Thielaviopsis 
basicola

Paenibacillus alvei Schoina et al. (2011)

R. solani P. fluorescens, 
Pseudomonas cepacia

Hagedorn et al. (1990), 
Cartwright et al. (1995), and 
Ligon et al. (2000)

X. campestris pv. 
malvacearum

P. fluorescens, B. cereus Mondal et al. (2000) and Ishida 
et al. (2008)

Sugarcane Colletotrichum 
falcatum

P. putida Viswanathan and Samiyappan 
(2002)

Sugar beet Pythium ultimum 
var. ultimum

L. enzymogenes Palumbo et al. (2005)

P. ultimum Stenotrophomonas 
maltophilia

Dunne et al. (1998)

R. solani P. fluorescens Nielsen et al. (1998)
Cercospora 
beticola

B. subtilis Collins and Jacobsen (2003)
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Table 8.2  Plant growth-promoting rhizobacteria in horticultural crop diseases management

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Tomato P. ultimum P. fluorescens, B. 
subtilis

Hultberg et al. (2000) and 
Jayaraj et al. (2005)

Pythium 
aphanidermatum

P. fluorescens Ramamoorthy et al. 
(2001)

Pythium splendens P. aeruginosa Buysens et al. (1994)
Phytophthora 
infestans

B. pumilus, P. 
fluorescens

Yan et al. (2002)

F. oxysporum f. sp. 
lycopersici

P. fluorescens, S. 
griseoviridis

Chin-A-Woeng et al. 
(1998), Dekkers et al. 
(2000), Khan and Akram 
(2000), Minuto et al. 
(2006), and Omar et al. 
(2006)

P. fluorescens, P. 
chlororaphis
B. megaterium, B. 
cepacia

Alternaria solani P. fluorescens Geels and Schippers 
(1983)

S. rolfsii P. fluorescens, B. 
amyloliquefaciens

Thiribhuvanamala et al. 
(1999) and Jetiyanon 
et al. (2003)

R. solani P. fluorescens Geels and Schippers 
(1983) and Szezech and 
Shoda (2006)

B. subtilis

Ralstonia 
solanacearum

P. putida Amith et al. (2004)

X. axonopodis pv. 
vesicatoria

B. pumilus Ji et al. (2006)

Pseudomonas 
syringae pv. tomato

P. syringae, P. putida, P. 
fluorescens

Van Peer et al. (1991), 
Wilson et al. (2002), and 
Matilla et al. (2010)

Clavibacter 
michiganensis 
subsp. 
michiganensis

B. subtilis Utkhede and Koch (2004)

Potato P. ultimum E. cloacae Kageyama and Nelson 
(2003)

P. infestans P. fluorescens, S. 
plymuthica

Glass et al. (2001) and 
Slininger et al. (2007)

Phytophthora 
erythroseptica

E. cloacae, 
Enterobacter sp.

Schisler et al. (2009)

Pseudomonas sp.
R. solani P. fluorescens Grosch et al. (2005)
Fusarium sp. P. fluorescens Al-Mughrabi (2010)
Verticillium dahliae P. fluorescens Uppal et al. (2008)
F. roseum var. 
sambucinum

B. licheniformis, B. 
cereus

Sadfi et al. (2002)
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Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Gibberella pulicaris P. agglomerans Schisler et al. (2000)
P. fluorescens

Helminthosporium 
solani

B. cereus, P. putida, 
Rhodococcus 
erythropolis

Martinez et al. (2002)

Rhodococcus 
globerulus

E. carotovora subsp. 
atroseptica

P. fluorescens Cronin et al. (1997)

Pectobacterium 
atrosepticum

R. erythropolis Crepin et al. (2012)

Streptomyces 
scabies

Pseudomonas mosselii Singhai et al. (2011)

Carrot P. ultimum E. cloacae Kageyama and Nelson 
(2003)

Alternaria radicina B. cepacia, B. 
amyloliquefaciens

Chen and Wu (1999)

Brinjal R. solanacearum P. fluorescens Chakravarty and Kalita 
(2011)

Chillies Phytophthora 
capsici

Bacillus sp. Jiang et al. (2006)
S. plymuthica Kim et al. (2008)
B. megaterium Akgül and Mirik (2008)

Colletotrichum 
capsici

P. fluorescens, B. 
subtilis

Bharathi et al. (2004)

Colletotrichum sp. P. fluorescens Hegde and Anahosur 
(2001)

Colletotrichum 
acutatum

Myxococcus sp. Kim and Yun (2011)

R. solani Chromobacterium sp. Kim et al. (2008)
F. oxysporum f. sp. 
capsici

B. licheniformis, P. 
fluorescens, 
Chryseobacterium 
balustinum, B. subtilis, 
B. amyloliquefaciens

Domenech et al. (2006)

P. fluorescens, B. 
subtilis

Sundaramoorthy et al. 
(2012)

S. rolfsii Streptomyces philanthi Boukaew et al. (2011)
Onion Botrytis allii B. licheniformis, B. 

amyloliquefaciens
Lee et al. (2001)

F. oxysporum B. amyloliquefaciens
Garlic Penicillium hirsutum P. agglomerans Kim et al. (2006)
Cassava P. aphanidermatum B. pumilus Pereira de Melo et al. 

(2009)R. solani
S. rolfsii
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Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

X. campestris pv. 
manihotis

B. cereus, B. subtilis, 
Pseudomonas sp.

Amusa and Odunbaku 
(2007)

Pea P. ultimum P. fluorescens Naseby et al. (2001)
Pythium sp. P. cepacia, P. 

fluorescens
Parke et al. (1991)

P. infestans B. pumilus Yan et al. (2002)
Aphanomyces 
euteiches

B. mycoides Wakelin et al. (2002)

P. syringae pv. 
syringae

P. fluorescens Seuk et al. (2001)

Beans P. splendens P. aeruginosa Anjaiah et al. (1998)
Colletotrichum 
lindemuthianum

P. chlororaphis Lagopodi (2009)

Botrytis cinerea B. subtilis Ongena et al. (2007)
Radish F. oxysporum f. sp. 

raphani
P. fluorescens Leeman et al. (1996)
P. putida Scher and Baker (1982)

P. ultimum E. cloacae Kageyama and Nelson 
(2003)

Beetroot P. debaryanum, P. 
ultimum

P. fluorescens Dodd and Stewart (1992)

Cabbage P. brassicae Pseudomonas sp. Hjort et al. (2010)
Yam Botryodiplodia 

theobromae
B. subtilis Swain et al. (2008)

F. moniliforme B. subtilis Okigbo (2002)
Penicillium 
sclerotigenum

Pseudomonas sp.

Lettuce R. solani P. fluorescens Grosch et al. (2005)
P. ultimum P. fluorescens Crawford et al. (1993)

Cauliflower F. moniliforme P. fluorescens Rajappan and Ramaraj 
(1999)

Cucumber P. ultimum P. fluorescens Georgakopoulos et al. 
(2002)

E. cloacae Kageyama and Nelson 
(2003)

P. aphanidermatum L. enzymogenes Folman et al. (2004)
Fusarium sp. P. fluorescens Brovko and Brovko 

(2000)
F. oxysporum P. putida Park et al. (1988)
F. oxysporum f. sp. 
cucumerinum

P. aeruginosa Bradley and Punja (2010)

Cabbage X. campestris pv. 
campestris

Bacillus velezensis Liu et al. (2016)

Carnation F. oxysporum f. sp. 
dianthi

P. fluorescens Van Peer and Schippers 
(1992)

P. cinnamomi P. fluorescens Sorokina et al. (1999)
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stimulus of plant growth contains a range of mechanisms by which the bacteria 
protect plants from phytopathogens (Glick 2012). The PGPR strains, viz., 
Paenibacillus sp. Azospirillum brasilense, B. subtilis subsp. subtilis, B. kururiensis, 
and P. stutzeri, enhanced biomass production in several trees and nursery saplings 
(Radhapriya et al. 2018). Also, the application of Bacillus spp. in the plant system 
facilitates plant growth promotion (Gange and Gadhave 2018). The enzyme ACC 
deaminase secreted by PGPR lowers the plant ethylene levels that are produced dur-
ing stress conditions and thus directly protects the plant from retardation (Glick 
1995). The significance of ACC deaminase gene has been documented in many of 
the crops which promote plant growth under various conditions (Mayak et al. 2004). 
Seed bacterization with fluorescent pseudomonads GRC2 resulted in improved seed 
germination, pod yield, and reduced charcoal rot disease incidence caused by M. 
phaseolina in peanut (Gupta et al. 2002). Similarly, application of P. fluorescens Pf1 

Table 8.2  (continued)

Crop Pathogen
Plant growth-promoting 
rhizobacteria References

Tea Exobasidium vexans P. fluorescens Saravanakumar et al. 
(2007b)

Peppermint R. solani P. fluorescens Kamalakannan et al. 
(2003)

Mango Colletotrichum 
gloeosporioides

P. fluorescens Koomen and Jeffris 
(1993) and Vivekananthan 
et al. (2004)

Lasiodiplodia 
theobromae

P. fluorescens, B. 
subtilis

Parthasarathy et al. 
(2016)

Banana BBTV P. fluorescens, Bacillus 
sp.

Harish et al. (2008a)

Apricot, peach Leucostoma cinctum P. fluorescens Rozsnyay et al. (1992)
Apple Venturia inaequalis P. fluorescens Kucheryava et al. (1999)
Grapevine Plasmopara viticola B. subtilis Furuya et al. (2011)
Raspberry Phytophthora 

fragariae var. rubi
Streptomyces sp. Valois et al. (1996)

Arabidopsis P. syringae pv. 
lachrymans

P. putida Wei et al. (1996)

P. aphanidermatum Peanibacillus polymyxa Timmusk et al. (2009)
Hyaloperonospora 
parasitica

P. fluorescens Iavicoli et al. (2003)

Asparagus Phytophthora 
megasperma

P. chlororaphis Carruthers et al. (1995)

Chrysanthemum P. aphanidermatum, 
Pythium dissotocum

P. fluorescens Liu et al. (2007)

Mushroom Pseudomonas 
tolaasii

P. fluorescens Bora et al. (2000)

Tobacco P. ultimum P. fluorescens Howell and Stipanovic 
(1979)

Peronospora 
tabacina

S. marcescens Zhang et al. (2001)
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as seed treatment followed by soil application enhanced the plant growth and has 
better native rhizobium nodulation and grain yield in legumes (Jayashree et  al. 
2000). Thus application of PGPR strain promoted the growth of crop by direct and 
indirect means and thus compensates the loss caused due to pathogens.

8.4	 �Antibiosis

Antibiotics are mostly deliberated to be low molecular weight organic compounds 
produced by beneficial microbes and is considered as one of the most important 
traits of PGPR. Antibiosis shows a vital role in the biocontrol of plant disease which 
often acts in concert with competition and parasitism. Dennis and Webster (1971) 
first described the antagonistic properties of Trichoderma in terms of antibiotic pro-
duction which included both nonvolatiles and volatiles. Certain PGPR strains are 
capable of producing volatile and nonvolatile antibiotics and are important feature 
for suppression of plant pathogens (Table 8.3). Some of these antibiotic-producing 
strains were also shown to suppress fungal plant disease in vitro (Whipps 2001).

Several strains of Pseudomonas and Bacillus spp. have been shown to produce 
wide array of antibiotics which includes ammonia, butyrolactones, 2–4 diacetylphlo-
roglucinol, kanosamine, oligomycin A, oomycin A, phenazine-1-carboxylic acid, 
pyoluteorin, pyrrolnitrin, tropolone, pyocyanin, iturin, surfactin, viscosinamide, 
zwittermicin A, agrocin 84, as well as several other uncharacterized moieties 
(Nyfeler and Ackermann 1992; Keel and Defago 1997; Nielsen et al. 1999; Whipps 
2001). Burkhead et al. (1994) reported that P. cepacia B37W produced pyrrolnitrin 
antibiotic inhibitory to Fusarium sambucinum. Michereff et al. (1994) could corre-
late the in vitro inhibition of Pythium and Rhizoctonia by 2,4-diacetylphloroglucinol, 
an antibiotic produced by P. fluorescens PF5 and in vivo control of C. graminicola, 
incitant of sorghum anthracnose. P. fluorescens (Trevisan) Migula F113 was shown 
to control the potato soft rot pathogen, E. carotovora subsp. atroseptica (van Hall) 
Dye, by the production of antibiotic 2,4-diacetylphloroglucinol (DAPG) (Cronin 
et al. 1997). Some evidence was also obtained that siderophore production by P. 
fluorescens F113 may play a role in biocontrol of potato soft rot.

Bacillus cyclic lipopeptides belong to three major families, the iturins (bacillo-
mycins, iturins, and mycosubtilins), the fengycins (plipastatins), and the surfactins 
(bamylocin A, esperins, lichenysins, pumilacidins, and surfactins) (Jacques 2011). 
Iturins and fengycins possess antifungal activity against a wide range of phyto-
pathogens, while surfactins are mostly antibacterial (Ongena and Jacques 2008). 
Bacilysin is a dipeptide composed of an L-alanine and the unusual amino acid 
L-anticapsin and one of the simplest peptide antibiotics known with antifungal and 
antibacterial activities. Difficidin and bacilysin from B. amyloliquefaciens FZB42 
have antibacterial activity against X. oryzae in rice (Wu et  al. 2015). B. subtilis 
CMB32 produced antifungal lipopeptides which was found to be antagonistic 
against C. gloeosporioides (Kim et al. 2010). Thus antibiotics secreted by the bio-
control agents were found to inhibit the plant pathogens and thus play an important 
role in disease management.
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Table 8.3  Antibiotics produced by PGPR

Target group PGPR Antibiotics References
Oomycetes, 
fungi

P. fluorescens 2,4-diacetylphloroglucinol Shanahan et al. (1992)

Phenazine-1-carboxylic acid Gurusiddaiah et al. 
(1986)

Dimer of phenazine-1-
carboxylic acid

Sakthivel and Sunish 
Kumar (2008)

Pyrrolnitrin Ligon et al. (2000)
Pyoluteorin Keel et al. (1992)
Mupirocin (pseudomonic acid 
A)

El-Sayed et al. (2003)

Rhizoxin analogues Loper et al. (2008)
Viscosinamide Nielsen et al. (1998)
Tensin Nielsen et al. (2000)
Masstolides A de Bruijn et al. (2007)

P. aeruginosa Phenazine-1-carboxamide Sunish Kumar et al. 
(2005)

Pyocyanin Baron et al. (1997)
Pseudomonas 
aureofaciens

Phenazine-1-carboxylic acid Thomashow et al. 
(1990)

Pyrrolnitrin Elander et al. (1968)
P. chlororaphis Phenazine-1-carboxylic acid Pierson and 

Thomashow (1992)
2-hydroxyphenazine Chin-A-Woeng et al. 

(1998)
P. putida Phenazine-1-carboxylic acid Pathma et al. (2011)
P. cepacia Pyrrolnitrin Cartwright et al. 

(1995)
Pseudomonas 
pyrrolnitrica

Monodechloro-pyrrolnitrin Hashimoto and 
Hattori (1968)

Pseudomonas 
borealis

2,3-deepoxy-2,3-didehydro-
rhizoxin

Tombolini et al. 
(1999)

Pseudomonas spp. Isopyrrolnitrin Hashimoto and 
Hattori (1966a)

Oxypyrrolnitrin Hashimoto and 
Hattori (1966b)

Amphisin Sorensen et al. (2001)
Oomycin A Kim et al. (2000)
Cepaciamide A Howie and Suslow 

(1991)
Ecomycins Jiao et al. (1996)
2,3-deepoxy-2,3-didehydro-
rhizoxin

Miller et al. (1998)

Butyrolactones Thrane et al. (2000)
N-butylbenzene Gamard et al.(1997)
Sulphonamide Kim et al. (2000)
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8.4.1	 �Hydrogen Cyanide (HCN) Production

HCN is a volatile, secondary metabolite that overwhelms the growth of microbes 
and that also disturbs deleteriously the growth and development of plants (Siddiqui 
et al. 2006). Several studies feature a disease defensive effect to HCN, e.g., in the 
suppression of “root-knot” and black rot in tomato and tobacco root caused by the 
nematodes Meloidogyne javanica and Thielaviopsis basicola, respectively (Voisard 
et al. 1989).

8.4.2	 �Siderophore Production

Iron (Fe) is an essential element to virtually all forms of life and plays an important 
role in different physiological processes such as respiration, photosynthesis, DNA 
synthesis, and defense against reactive oxygen species. However, its availability is 
extremely limited by the very low solubility of ferric hydroxide complexes at neu-
tral pH. To survive in such an environment, plant-associated PGPRs have different 
strategies for obtaining iron from the soil, which includes the synthesis of low 
molecular weight siderophores, viz., catechols, pyoverdin, and hydroxamate, which 
are selective ferric ion chelators. These compounds are secreted in response to iron 
deficiency. Siderophore-producing PGPR can prevent the multiplying of pathogens 
by repossessing ferric iron in the root zone (Siddiqui 2005). Iron depletion in the 
rhizosphere does not harm the plants, as the low iron level occurs at microsites of 
high microbial movement during the establishment of the pathogens.

Plants can utilize various fungal and bacterial siderophores as source of iron, 
while the total iron levels are too low to pay substantially to plant iron uptake. Plants 
also use their innate mechanisms to gain iron, dicots via a root membrane reductase 
protein that converts insoluble Fe3+ ion into the more soluble Fe2+ ion or in the case 
of monocots by the production of plant siderophores (Crowley 2006). 

Table 8.3  (continued)

Target group PGPR Antibiotics References
B. amyloliquefaciens Bacillomycin D Gu et al. (2017)
B. cereus Kanosamine Milner et al. (1996)

Zwittermicin A Silo-Suh et al. (1994)
B. subtilis Kanosamine Vetter et al. (2013)

Iturin A (cyclopeptide) Constantinescu (2001)
Plipastatins A and B Volpon et al. (2000)
Fengycins Zhang and Sun (2018)

Bacteria P. fluorescens Mupirocin (pseudomonic acid 
A)

Fuller et al. (1971)

Azomycin Shoji et al. (1989)
Virus Bacillus sp. Karalicin Lampis et al. (1996)

B. amyloliquefaciens Mersacidin Chatterjee et al. 
(1992)
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Siderophore-secreting microbial strains own iron-regulated outer membrane pro-
teins (IROMPs) on their cell surface that carriage ferric iron complex to the respec-
tive cognate membrane; iron thus becomes accessible for metabolic processes (Johri 
et al. 2003). Siderophore-producing fluorescent pseudomonads are ahead commer-
cial importance as they are harmless, do not prime to biomagnification, and also 
deliver iron nourishment to the plants, thereby stimulating plant growth (Sayyed 
et al. 2005). Carrillo-Castaneda et al. (2003) reported encouraging effects on alfalfa 
plantlet development after the inoculation of siderophore-producing genus such as 
Azospirillum, Pseudomonas, and Rhizobium grown in iron-starved cultures. The 
bacterized alfalfa seeds improved their germination as well as the root and stem dry 
weight. Iron-chelating hydroxamate siderophores of P. aeruginosa showed inhibi-
tory action against R. solani and C. gloeosporioides in chili (Sasirekha and Srividya 
2016). Also, inoculation of siderophore-producing rhizobacteria and their consor-
tium increased the growth of wheat plant (Kumar et al. 2018). Nevertheless, as with 
other PGPR, the growth elevation that occurred may be due to other mechanisms or 
combinations of one or two mechanisms that rise nutrient availability, subdue 
pathogens, or upset root growth via hormone production.

8.5	 �Competitions

Effective colonization and perseverance in the rhizosphere are essential for PGPR 
to utilize their positive consequence on plants (Elliot and Lynch 1995). Several 
reports indicate the importance of colonization of the biocontrol agents in rhizo-
sphere and endorhizosphere regions of plant (Forlani et al. 1999). Competition for 
nutrients, primarily carbon, nitrogen, and iron, might result in biocontrol of soil-
borne plant pathogens (Benson and Baker 1970). Suppression of damping off of 
peas by P. cepacia showed a significant relationship between population size of the 
biocontrol agent and the degree of disease suppression (Parke et al. 1991). The bac-
terial antagonist P. fluorescens effectively suppressed the green mold pathogen P. 
digitatum by means of competition and induced systemic resistance on citrus peels 
(Wang et al. 2018).

Also, suppression of take-all of wheat and Fusarium wilt of radish was corre-
lated with the colonization of roots by Pseudomonas strains (Bull et al. 1991). Scher 
et al. (1985) reported that disease suppression by fluorescent pseudomonads depends 
mainly on its ability to colonize rhizosphere. Introduction of sss gene encoding 
rhizosphere colonization ability into poor colonizer strain of P. fluorescens WCS 
307 increased competitive rhizosphere colonization ability in tomato root tip result-
ing in increased protection against F. oxysporum f. sp. lycopersici (Dekkers et al. 
2000). So, the microbial ability to colonize rhizosphere and their persistence 
throughout the growing season has become the crucial factor for the selection of 
effective antagonistic organism. Dekkers et al. (1998b) showed that the gene encod-
ing NADH dehydrogenase I plays an important role in root colonization. Another 
gene required for efficient colonization is the sss gene, encoding a site-specific 
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recombinase of the lambda integrase family which helps in adapting cells to rhizo-
sphere conditions (Dekkers et al. 1998a).

8.6	 �Lytic Enzymes

The antagonistic process relies on the production of hydrolytic enzymes which 
enhances penetration of the host mycelium and partial degradation of its cell wall 
via secretion of mycolytic enzymes, viz., chitinases and glucanases. The pathogenic 
microbes that have shown susceptibility to these hydrolytic enzymes include B. 
cinerea, F. oxysporum, Phytophthora spp., P. ultimum, R. solani, and S. rolfsii (Glick 
2012). The roles of each protein in the enzymatic complex of Pseudomonas appear 
to be different, and enzymes with different or complementary modes of action 
appear to be required for maximal antifungal effect on different pathogens 
(Viswanathan and Samiyappan 2002). Minaxi et al. (2012) described that B. subtilis 
solubilized phosphorus, exhibited 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase activity, and produced ammonia and indole-3-acetic acid. Various 
microbes secrete and excrete array of metabolites that can hamper pathogen growth 
and other activities. Numerous microbes produce and release hydrolytic enzymes 
that can lyse a wide range of polymers, including chitin, cellulose, hemicellulose, 
proteins, and nucleic acid (Table 8.4).

Expression and secretion of these hydrolytic enzymes by beneficial microbes can 
sometimes result in the suppression of plant pathogen activities directly. Several 
microbes like B. subtilis, B. cereus, B. thuringiensis, and S. marcescens have a 
potential to secrete hydrolytic enzymes for the biocontrol of phytopathogens 
(Jadhav and Sayyed 2016). Lytic enzymes can reduce different polymeric sub-
stances such as chitin, proteins, cellulose, hemicellulose, and DNA (Vivekananthan 
et al. 2004). Chitinase produced by S. plymuthica C48 inhibited spore germination 
and germ tube elongation in B. cinerea, but S. marcescens was considered to pro-
duce extracellular chitinases which act as antagonists against S. rolfsii (Frankowski 
et al. 2001). It was demonstrated that extracellular chitinase and laminarinase syn-
thesized by P. stutzeri lyse mycelia of F. solani (Compant et al. 2005).

8.7	 �Induced Systemic Resistance

The PGPR induces systemic resistance (ISR) through invigorating the physical and 
mechanical integrity of cell wall as well as altering physiological and biochemical 
response of host leading to the synthesis of defense molecules against challenge 
inoculation of plant pathogens. ISR mechanism in plants was imparted by several 
PGPR determinants, viz., lipopolysaccharides, lipopeptides, salicylic acid, masse-
tolide A, 2,3-butanediol, hexenal, and iron-regulated metabolite Cx (Pal and 
Gardener 2006). Followed by the interaction of PGPR determinants with plants, 
several defense reactions occur due to the accumulation of pathogenesis-related 
(PR) proteins (chitinase and β-1,3-glucanases), peroxidase, polyphenol oxidase, 
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phenylalanine ammonia lyase, chalcone synthase, catalase, phenolics, callose, lig-
nin, and phytoalexins. Kloepper et al. (1992) reported that five of six rhizobacteria 
induced systemic resistance in cucumber which exhibited both external and internal 
root colonization. Seed treatment of radish with resistance inducing P. fluorescens 
strain WCS374 reduced Fusarium wilt in naturally infested field soil upto 50 per-
cent (Leeman et al. 1995).

Chitinolytic enzymes together with β-1,3-glucanases or cellulases are most fre-
quently considered to play a vital role in biocontrol (Chet et al. 1998). The enzymes 
like chitinases and β-1,3-glucanases lyse the host cell wall and lead to the leakage 
of protoplasmic contents which are in turn used as a food material for the multipli-
cation of the antagonist. Biological control agents, namely, P. fluorescens 89B-27 
and S. marcescens 90–166, were observed to induce resistance in cucumber against 
bacterial pathogen P. syringae pv. lachrymans and fungal pathogens, F. oxysporum 
f. sp. cucumerinum and Colletotrichum orbiculare (Liu et al. 1995). ISR by PGPR 
has been achieved in large number of crops including potato (Doke et al. 1987), 
radish (Leeman et al. 1996), cucumber (Wei et al. 1996), bean (de Meyer and Hofte 
1997), tobacco (Troxler et  al. 1997), tomato (Duijff et  al. 1993), chilli, brinjal 
(Ramamoorthy et al. 2001), banana (Harish et al. 2009a, b), sugarcane (Viswanathan 

Table 8.4  Lytic enzymes produced by plant growth-promoting rhizobacteria

Enzymes Producer Target pathogen References
Chitinase S. plymuthica B. cinerea Frankowski et al. 

(2001)
S. sclerotiorum Kamensky et al. 

(2003)
S. marcescens S. rolfsii Ordentlich et al. 

(1988)
Phaeoisariopsis 
personata

Kishore et al. (2005b)

S. lydicus Pythium sp. Mahadevan and 
Crawford (1997)

B. cereus R. solani Chernin et al. (1997)
Paenibacillus 
illinoisensis

R. solani Jung et al. (2003)

Endochitinase P. fluorescens Tobacco necrosis virus Maurhofer et al. 
(1994)

F. oxysporum f. sp. pisi Benhamou et al. 
(1996)

β-1,3-
glucanase

Paenibacillus sp. F. oxysporum f. sp. 
cucumerinum

Singh et al. (1999)

P. cepacia S. rolfsii Fridlender et al. (1993)
Streptomyces spp. P. fragariae var. rubi Valois et al. (1996)
Streptomyces sioyaensis P. aphanidermatum Hong and Meng 

(2003)
Laminarinase Pseudomonas stutzeri F. solani Lim et al. (1991)
Proteases Stenotrophomonas 

maltophilia
P. ultimum Dunne et al. (1998)
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and Samiyappan 1999), rice (Harish et al. 2008b), and mango (Parthasarathy et al. 
2016) against broad spectrum of pathogens including fungi (Leeman et al. 1995), 
bacteria (Liu et al. 1995), and viruses (Kandan et al. 2005).

The ISR shares many properties with innate immunity in humans (Lugtenberg 
and Kamilova 2009). When plants grow, their roots enter quickly into a symbiosis 
with diverse microbes. This symbiosis may play the role of beneficial (aid in the 
uptake of water and minerals, such as phosphate, and protection of biotic and abi-
otic stress) or pathogenic agents in the development of plants (Gnanamanickam 
2006). In case of pathogenic bacteria, the immune response of the plant is character-
ized by the production of salicylic acid, which in revenge induces a set of genes 
encoding pathogenesis-related proteins in the plant (Gnanamanickam 2006). ISR 
was observed first with Pseudomonas sp. strain WCS417r against Fusarium wilt of 
carnations and by selected rhizobacteria against the fungus C. orbiculare in cucum-
ber (Compant et  al. 2005). Available reports showed that in rice, seed treatment 
followed by root dipping and a foliar spray with P. fluorescens strains Pf1 and FP7 
induces systemic resistance against the sheath blight pathogen, R. solani (Jayashree 
et al. 2000). Thus ISR plays a major role in combating the pathogen during the host-
pathogen-biocontrol interaction.

8.8	 �Formulations of PGPR

Potential PGPR needs to be formulated with suitable carriers for mass multiplica-
tion and broad-scale application in fields. Mass multiplication of PGPR in a suitable 
medium and development of a powder formulation were first carried out in 1980. A 
dried powder formulation of PGPR is especially important for seed treatment and 
soil application. Among the various bioformulations, talc- and liquid-based formu-
lations were extensively used in agriculture and horticulture crops for managing 
diseases (Table 8.5). Although this type of formulation can be produced in large 
quantity, it may be difficult to store and have a relatively short shelf life, poor qual-
ity, and low field performance. Development of bioformulation with short shelf life 
was possible by using vegetative cells of the antagonists as the active ingredient in 
the formulations (Kanjanamaneesathian et  al. 2007). Various solid formulations, 
such as floatable granules, floatable pellets, and effervescent fast-disintegrating 
granules, have been developed for the management of sheath blight disease under 
controlled conditions (Wiwattanapatapee et al. 2013). These carrier-based formula-
tions help in improving the shelf life, protecting the viability, and easy delivery of 
the bacterial cells to the targeted sites in the plant system and long-term survival in 
the soil. Thus formulations with longer shelf life need to be targeted as they can 
establish in the soil, survive for a considerable period of time, and improve the soil 
fertility besides protecting from harmful pathogens.
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Table 8.5  Different types of formulations from PGPR

Formulation PGPR Crop Disease References
Talc P. fluorescens Blue pine Nursery diseases Ahangar et al. (2012)

Chillies Fruit rot Bharathi et al. (2004)
Muskmelon Fusarium wilt Bora et al. (2004)
Rice Sheath blight Radjacommare et al. 

(2002)
Tomato TSWV Kandan et al. (2005)
Mung bean Macrophomina 

root rot
Saravanakumar et al.
(2007a)

Rice Sheath rot Saravanakumar et al.
(2007b)

Tea Blister blight Saravanakumar et al. 
(2009)

Sugarcane Red rot Viswanathan and 
Samiyappan (2002)

Mango Anthracnose Vivekananthan et al. 
(2004)

Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Lignite P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Peat P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

P. chlororaphis, B. 
subtilis

Turmeric Rhizome rot Nakkeeran et al. 
(2004)

Chitin B. subtilis Groundnut Crown rot Manjula and Podile 
(2001)Pigeon pea Fusarium wilt

Vermiculate P. fluorescens Rice Sheath blight Vidhyasekaran and 
Muthamilan (1999)

Charcoal Bacillus sp. Mung bean Wilt Pahari et al. (2017)
Wheat bran B. subtilis, P. 

putida
Lettuce, 
cucumber

Root rot Amer and Utkhede 
(2000)

EB™ P. fluorescens Sugar beet Damping-off Moenne-Loccoz 
et al. (1999)

Alginate P. fluorescens Sugar beet Pythium rot, 
Rhizoctonia rot

Russo et al. (2001)

Streptomycetes sp. Tomato Damping-off Sabaratnam and 
Traquair (2002)

Liquid P. fluorescens Tomato Fusarium wilt Manikandan et al. 
(2010)

Mango Stem end rot Parthasarathy et al. 
(2016)

Water in oil Fluorescent 
pseudomonads 
(FP7)

Banana Anthracnose Faisal et al. (2014)
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8.9	 �Concluding Remarks and Future Directions

Historically, emphasis in crop science has been placed on the discovery of new dis-
ease resistance genes through molecular breeding techniques rather than using the 
resistance potential already present in plants. The resistance in the plants can be 
induced by means of beneficial microbes present in the soil rhizosphere. The recent 
demonstration of the use of biocontrol agents in the laboratory and field situations 
presents exciting opportunities for the control of plant diseases by multiple mecha-
nisms. Various field experiments with crop plants have shown that eco-friendly 
approaches using microbial bioagents can lead to long-lasting, broad-spectrum dis-
ease control and can be used preventively to bolster general plant health. However, 
application of bacterial bioformulation in the field at times may exhibit inconsis-
tency in the efficacy due to short shelf life in the environment and their susceptibil-
ity to unfavorable environmental conditions. The survival and competitive ability of 
the microbial strains to be introduced must be improved as very little information is 
known about the competitiveness of the microbes and factors governing it. In order 
to harness the potential benefits of bioagents in commercial agriculture, the consis-
tency of their performance must be improved. Development of quality inoculum 
with increased shelf life and user-friendly formulation are important factors essen-
tial for the success of bioinoculant technology. Besides, the molecular mechanisms 
underlying the host-pathogen-biocontrol interaction should be unraveled through 
genomic and proteomic approaches to identify the defense genes in the plants. 
These genes can be exploited for the management of plant diseases. Molecular 
markers, e.g., reporter gene tagging, PCR, or serological markers, can be used for 
studying the competence of the inoculated PGPR strains. Once these factors are 
identified, it may be possible to manipulate them in the field to enhance the stability 
of their performance. Thus the PGPR possessing the useful biosynthetic genes can 
be screened through molecular markers and can be exploited for sustainable plant 
disease management.
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Abstract
All soils are heterogeneous in nature with differentiation in physical, chemical, 
and biological properties. Heterogeneity in substrate availability creates micro-
bial hotspots and hot moments in soil. Microbial hotspots are microsites in soil 
with higher microbial activity and respiration rate compared to bulk soil. 
Microbial hotspot localization may occur around plant root surface (i.e., rhizo-
sphere), on degrading plant roots (detritusphere), plant root or earthworm bur-
rows (biopores), or surface of soil aggregates. In soil, most prevalent hotspots are 
found in the rhizosphere and on aggregate surfaces but frequently are of mixed 
origin. Priming effects are limited in microbial hotspots but are of significance of 
hot moments (short-term microbial hotspots). Residue decomposition induces 
significant changes in the microbial community. For concept of soil microbial 
hotspot and hot moment, we extensively reviewed and examined available litera-
ture related to management of soil biodiversity. Long-term cropping sequence 
had also significantly influenced microbial activity in agricultural soils. Increasing 
biodiversity through improved crop management practices restores positive 
aboveground-belowground interactions. In these insights, microbial hotspot 
management should be considered important in soil sustainability and food 
security.

Keywords
Microbial hotspot · Hot moment · Microbial activity · Soil biodiversity

9.1	 �Introduction

All soils contain microorganisms, i.e., bacteria, actinomycetes, fungi, protozoa, and 
nematodes, but the relative amounts differ because of variable soil conditions. Each 
of these microorganisms contributes to boost soil and plant health through energy 
and chemical transformations, thereby playing a vital role in biochemical processes 
or cycles. Microbial activity is the most important indicator of soil health 
(Kibblewhite et  al. 2007) due to its high sensitivity to changes in environmental 
conditions and land use pattern (Mganga et al. 2015). Microbial activity is affected 
by microbial community composition (Goberna et al. 2005), the substrate (labile C) 
availability and energy supply (Schimel and Weintraub 2003) and soil aggregate 
(Miller and Dick 1995). In the soil system, the most biogeochemical processes are 
microbially mediated. Thus, nutrient availability through these processes depends 
upon the functionality of soil microbial diversity. Microorganisms play an 
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important role in the organic matter decomposition, returning nutrients to plant 
available forms, humus formation. Humus tends to bind to negatively charged sites 
of soil particles and thus forms a film and causes aggregation of particles, improving 
soil structure, aeration, and water retention. In biosphere, owing to the high differ-
entiation of properties and processes, the soil is the most heterogeneous entity. The 
heterogeneity in the availability of substrate to microorganisms led to the creation 
of microbial hotspots in the soil. Microbial hotspots are nothing but microsites or 
smaller volume of soil with a much faster rate of processes compared to average soil 
conditions. Hotspots have fresh substrate inputs, which supply energy to microor-
ganisms for growth and maintaining their metabolism. Hotspots in soils are charac-
terized by higher enzyme activities, higher microbial respiration, and biomass 
(Banfield et al. 2017; Hoang et al. 2017).

The short-term microbial hotspots are known as hot moments. Hot moments are 
a short sequence of events inducing an accelerated rate of processes. Thus, hot 
moments and hotspots are of dynamic character. The duration of hot moments 
depends on many factors, i.e., the quantity and quality of substrates, quantity of 
output, and location of occurrence (Kuzyakov and Blagodatskaya 2015). An amount 
of labile C and energy drives the microbial activities in all the soils (Blagodatsky 
et al. 1998). So, the labile C as input not only increases the microbial abundance but 
also microbial activity in soil.

9.2	 �Size and Duration of Microbial Hotspots and Hot 
Moments

Based on the location of labile organic sources as input, the hotspot groups are cat-
egorized as follows (Table 9.1). Providing the fact that plants stimulate microbial 
and enzyme activity in its root zone by releasing labile C and other rhizodeposits, 
the rhizosphere is one of the most dynamic habitats (Jones et al. 2009; Hinsinger 
et al. 2009). The detritusphere (soil adjacent to dying and dead roots) may also have 
the hotspots because of high polymers as well as low molecular weight organic 
carbon inputs through the dying root (Bastian et al. 2009). In rhizosphere, the plant 
provides a continuous flow of rhizodeposition during growth period (Kuzyakov and 
Domanski 2000), whereas dead root decomposition acts as a temporally concen-
trated C source (Spohn and Kuzyakov 2014). Due to the longer and concentrated 
source of available labile C from dead roots, it is generally believed that microbial 
population is higher in detritusphere (Marschner et  al. 2012) than rhizosphere 
(Spohn and Kuzyakov 2014). Tubular soil macropores or voids in soil formed by the 
activity of roots or pores remaining after root decay (detritusphere), by earthworms 
(drilosphere), are known as biopores, which are an important microbial hotspot, 
especially in the subsoil (Hoang et al. 2016). Various processes and C sources con-
tribute to their development simultaneously or continuously.

Root litter addition and earthworm burrows increase microbial biomass 
(Sanaullah et al. 2011). Biopores affect soil physical conditions especially subsoils 
by increasing air and water circulation (Kautz 2014). The hotspot development rates 

9  Soil Microbial Hotspots and Hot Moments: Management vis-a-vis Soil Biodiversity



www.manaraa.com

192

are not constant; it varies temporally. The extent and regularity of hot moments 
generally depend upon (1) regular availability of labile C or the input source and (2) 
the rates of microbial use of input (Herron et al. 2013). Accordingly, hotspot forma-
tion requires variability. Many properties and process rates in soil surrounding 
hotspots vary by orders of scale within very short distances and periods. The dura-
tion of the hotspot is determined by the dynamic nature of C input. Constant avail-
ability of inputs or labile carbon source led to the longer existence of hotspots.

9.3	 �Microbial Activities as a Driver of Hotspot Performance

The microbial hotspots have two to three times greater diversity and microbial bio-
mass over bulk soil (Marschner et al. 2012). However, the dominant part of this total 
biomass is shared by dormant microbes, while active microbes represent a small 
share is known to perform a range of biochemical processes. Populations of active 
microorganism in the root rhizosphere are two to three times more compared to bulk 
soil (Blagodatskaya et al. 2014). In the detritusphere, a zone where C liberation is 
taking place for longer and the microbial root competition is fairly weaker com-
pared to rhizosphere, the population and biomass of active microbes reported to 
4–20 times greater than that of in bulk soil (Blagodatskaya et al. 2009). Microbial 
hotspots because of their high density of C substrate and longer hot moments are 
generally outstanding in terms of active microorganisms’ biomass, particularly in a 
physiologically alert stage (Table  9.2). For example, due to some reason, many 
researchers reported that the activity of hydrolytic enzymes in rhizosphere zone was 
3–5 times greater (Lee et al. 2013), whereas the N2O emissions from the detritus-
phere region were 2–9 times more intensive (Blagodatskaya et al. 2010) compared 
to bulk soil. Therefore, it is very clear that hotspots are not only rich in total micro-
bial biomass, but also the portion of active microbes is also higher in hotspots which 
are very important for biochemical processes within the soil (Table 9.2).

Table 9.1  Properties of hotspot groups in soil (Kuzyakov and Blagodatskaya 2015)

Hotspots Rhizosphere Detritusphere Biopores Aggregate surface
Origin Primary 

biotic; roots
Primary biotic; 
litter

Secondary biotic; 
burrowing 
animals, roots

Secondary 
(mainly) abiotic; 
swelling/shrinking

Boundary 
(mm)

2–10 5–20 1–3 0.1–1

Relative C 
availability

High High–medium Medium–low Low

C/N ratio ~10 >20 Variable 10–20
Relevance Whole soil 

profile
Above mineral 
soil surface, 
topsoil

Below Ah/Ap, 
subsoil

Below Ah/Ap, 
subsoil

Regularity Occasional + 
regular

Regular + 
occasional

Occasional Occasional

Duration of 
hot moments

A day 
(weeks)

Weeks–months Days–weeks Days
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9.3.1	 �Microbial Diversity and Community Structure in Hotspots

The microbial hotspots are rich in microbial diversity especially of active microbes 
over bulk soil (Marschner et al. 2012). The principal reason for higher biomass of 
microbes in these microbial hotspots is higher substrate or C input availability 
which stimulates their growth and shapes community structure. Size and shape of 
the microbial community affected by locality of hotspot and type of substrate avail-
ability (Table 9.2).

Table 9.2  Relative changes of PLFA content by activation/deactivation of soil microbial com-
munity during hot moments (Kuzyakov and Blagodatskaya 2015)

Effect of

Relative changes in PLFA content

SourceTotal Fungal
Bacterial
Gram + Gram −

Hotspots in comparison with bulk soil
Plant roots 
(rhizosphere)

↑ 1.5–1.7 ↓ 1.1–1.3 ↑↓ 1.1 ↑ 1.1–1.3 Denef et al. (2009)

Plant growth ↑ 1.7 ↑ 1.8 ↑ 2 Lu et al. (2004)
Plant species ↑ 1–1.7 ↑ 1.4–2 ↑ 1–1.2 ↑ 1–1.3 Hamer and Makeschin 

(2009)
Detritusphere ↑ 1.8–5.1 ↑ 11–68 ↑ 2.1–↓ 1.6 Baldrian et al. (2010)
Detritusphere ↑ 1.1–1.4 ↑ 2–2.3 ↑ 1.5–↓ 1.3 Marschner et al. 

(2012)
Detritusphere ↑ 1.2 ↑ 2.5–4 ↑ 1.1–1.3 Rousk and Bååth 

(2007)
Activation during hot moments
Rewetting ↑ 1.4–1.6 McIntyre et al. (2009)
Available 
nutrients

↑ 2.4 ↑ 50 ↑ 1.2 Ehlers et al. (2010)

Wheat straw 
and fertilizer

↑ 1.7 1.1 ↑ 1.7 ↑ 5.5 Pietri and Brookes 
(2009)

Barley straw ↑ 4 ↑ 1.3 Rousk and Bååth 
(2007)

Leaf litter ↑ 1.5–4.7 McIntyre et al. (2009)
Sorghum 
residues

↑ 1.7–2 ↑ 2.3–3 ↑ 1.5 ↑ 2 White and Rice (2009)

Hotspot expiration–end of hot moments
One-year 
incubation

↓ 3.5–3.6 ↓ 6–10 ↓ 2.7–5 ↓ 2.9–6 Feng and Simpson 
(2009)

Soil depth ↓ 3 ↓ 3.5 ↓ 1.5 ↓ 2.7 White and Rice (2009)
Decreasing pH ↓ 2.1 ↑ 1.3 ↓ 1.7 Djukic et al. (2010)
Grazing ↓ 2 ↑ 2 Klumpp et al. (2009)
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9.3.2	 �Microbial Strategies and Competition in Hotspots

Microbial functions within microbial hotspot region are defined by the supremacy 
of the ecological groups, i.e., r- and K-strategists (Nottingham et al. 2009). However, 
the phylogenic structure of the microbial community is not directly governed by 
supremacy as most of the bacterial and fungal phyla are reported to have both r- and 
K-strategists. The dominant type of strategy within the microbial hotspots can be 
analyzed by the kinetics and effectiveness of microbial growth. Kinetic parameters 
of microbial communities suggest that the addition of very minute amounts of labile 
carbon substrates can be able to activate fast-increasing strategists in the microbial 
hotspots (Blagodatskaya et al. 2010). Many studies proved that rhizosphere, detritu-
sphere, and biopores are the microbial hotspots with great microbial biomass and 
activity compared to bulk mineral soil, but a few reports have been found on the 
aspect of competition between microbes in these hotspot sites. The amount and 
availability of labile C substrates in detritusphere and rhizosphere are known to 
define their competition structure. For example, the detritusphere is the preferred 
site for the competition between microbial species, whereas in rhizosphere this 
occurs mainly between microbes and plants (Kuzyakov and Xu 2013).

9.3.3	 �Signal Pathways at Hot Moments

Microorganisms change physiological states (i.e., from active stage to dormant 
stage and vice versa) on the basis of availability of labile C substrates. So, labile C 
availability plays an important role in the adaptation of microbes to dynamic envi-
ronmental conditions in the hotspots. However, some of the physicochemical fac-
tors of soil (i.e., moisture and temperature) are also known to play a vital role in the 
switching of physiological states of soil microbes in the hotspots. Apart from these 
factors, signaling molecules are also of a prime significant factor in activation/deac-
tivation mechanisms of the microbes. Many studies suggested that transition of 
active cells to dormancy is mainly governed by quorum sensing, i.e., a phenomenon 
in which secretion of sensing molecules stirs up the reduction of population density 
of microbes in subjected hotspots (Gray and Smith 2005).

9.3.4	 �Instruments for Characterization of Hotspots

The pH changes within microbial hotspot can be reported with gels (Hinsinger et al. 
2009) or by placing pH and redox microelectrodes near to the root zone of the plant. 
Autoradiography and its follow-up imaging are also good means for localization of 
rhizodeposits and of uptake of nutrients by microbes in the hotspot sites (Rasmussen 
et al. 2013). However, many times this type of localizations through autoradiogra-
phy does not necessarily reveal the exact location and pattern of microbial hotspots. 
These parameters can use to define the microbial activity (CO2/O2 changes) of the 
microbial hotspot. Recently developed soil zymography technology is able to locate 
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the hotspots by analyzing the activities of various soil enzymes, i.e., protease, 
amylase, acid and alkaline phosphatases, cellulase, and chitinase (Eickhorst and 
Tippkotter 2008).

9.4	 �Ecological Significance of Microbial Hotspot

The higher rates of biochemical processes within the hotspot zone over bulk soil are 
of special ecological significance as this directly or indirectly associated with sub-
strate availability. Microbial hotspots directly affects decomposition and mineral-
ization of crop residue, amount of rhizodeposits and soil organic matter, microbial 
populations, and release of nutrients. The hotspots of soil also govern the rates of 
processes related to C transformation, i.e., microbial immobilization of soil N and 
other plant nutrients as well as consumption of O2 and electron acceptors available 
in the soil and root sites (Rudolph et al. 2013).

9.5	 �Strategies for Hotspot Management

Rhizospheric and detrituspheric soils are characterized by high concentrations of 
labile C and hence are hotspots of microbial activity. Furthermore, the microbial 
community structure modifies with distance from roots or residues. Marschner et al. 
(2012) reported the higher activities of ß-glucosidase, xylosidase, and phosphatase 
in the vicinity (1–2 mm) of roots and residue-amended soil at 2 weeks after plant-
ing, with usually greater activities in the vicinity of the residue-amended soil over 
roots (Fig. 9.1).

Manipulated crop type and 
cropping systems

Effecient 
species 

Manipulated root system

Root proliferation; Root activity

Root exudation; Effecient genotypes

Cropping 
system

Rhizosphere

Manipulated 
microbes

Microorganisms; PGPR

Mycorrhiza

Manipulated rhizo-
environment

Localized nutrient supply; Rhizosphere
fertilization; Rhizosphere nutrient intensity;
transplant with rhizo-soil

Fig. 9.1  Strategies for hotspot management
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9.5.1	 �Microscale Distribution and Function of Soil Microbes 
in the Interface Between Rhizosphere and Detritusphere

In general, results of a case study involving samples amended with maize residue 
show that the degree of microbial structure did not overlap resulting in a U-shaped 
pattern of activities in the rhizosphere-detritusphere interface. The amount of PLFAs 
which is directly associated with activity and biomass of soil microbes was nearly 
30% more in detritusphere zone over rhizosphere. The major part of reported PLFAs 
primarily belongs to fungal communities and their activities, and biomass was 5–7 
times higher in the roots of plants of residue-amended soil as compared to 
unamended soil. Plant roots and soils amended with crop residue have the potential 
to strongly affect the amount of PLFAs especially in the root vicinity zone due to 
their richness in terms of easily degradable carbon substances. The microscale gra-
dients of various soil enzymes and bacterial and fungal PLFAs within interface and 
between rhizosphere and detritusphere zones are directly controlled by carbon 
inputs of the soil. Due to their higher density of carbon, the overall effect of crop 
residue was larger than that of root compartment.

9.5.2	 �Role of Organic Layer-Mediated Microbial Hotspots

Soils with high density of organic carbon are treated as organic layer which strongly 
acts as hotspots for microbes in respect to their activity, abundance, and diversity. A 
microbial enzymatic activity was found much higher in soils rich in organic carbon 
compared to mineral soils. In comparison to mineral soil, the organic-rich soils may 
be a good representative for a hotspot resulted in higher productivity and faster 
cycling of various essential nutrients in the associated agroecosystem (Lee et al. 
2012). Archaeal diversity was found to be greatly affected with changes in soil 
types, while diversity index of bacteria and fungi did not exhibit any significant 
change with respect to type of soil. The dissimilarity in microbial abundance and 
diversity indicated that there was geographical aberration in the microbial commu-
nity even in Arctic tundra regions with similar temperature conditions. This may be 
due to historical difference in the development of the soil layer between each tundra 
region resulting to different evolutionary processes in the microbial populations. 
The identification of active microbes in context of the spatial heterogeneity of tun-
dra soils, temperature, and moisture conditions is necessary to know the under-
standing of nutrient cycling in Arctic systems (Lee et al. 2012).

9.5.3	 �Microbial Community and Their Structures in Residue-
Amended Soil

Microbiological processes are playing a great role for the various ecological func-
tions of soils due to their extended role in input and output dynamics of soil organic 
matter (SOM) content. Organic carbon content of soil which may lose through 
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erosion or mineralization can be balanced by the incorporation of crop straw (Singh 
et  al. 2015, 2016; Meena et  al. 2013, 2015). A comprehensive study of samples 
(residues, detritusphere, and bulk soil) regarding diversity and structure of different 
bacterial and fungal communities in terms of PLFAs of soil amended with wheat 
residue highlighted the existence of a succession of populations following wheat 
straw incorporation, as proved in recent studies focused on plant residue decay in 
soil (Ranjard et al. 2003). A Monte Carlo test of samples amended with wheat straw 
has been executed to assess the significant level of the imbalance between incuba-
tion times and has allowed the deduction of magnitude for community that was 
found in following sequence: bulk soil<detritusphere zone< residue. The variations 
in bacterial diversity, richness, and community composition residue-incorporated 
soils at low and high moisture levels show that moisture strongly influences bacte-
rial distribution in residue-incorporated soils (Ranjard et al. 2003).

Overall, these all findings confirmed that soils amended with wheat residue and 
living roots act as hotspots especially due to their richness in terms of carbon sub-
stances which resulted in important community dynamics, particularly in poorly 
managed soils having substrate for microbial growth. Hence, the view dynamics of 
community structure seemed to be related to changes in the availability of carbon 
resources that occur during decomposition. The alterations in the ARISA profile 
confirmation for the residue zone at the early stages comprised of a strongly 
increased intensity of various bands which were of slight importance before the 
wheat straw incorporation (Ranjard et al. 2003).

9.5.4	 �Changes in Soil Microbial Composition Under Cropping 
Systems and Tillage Practices

The agriculture practices affect the soil microbial communities in a very complex 
manner. Therefore proper understanding of these practices is significant for the effi-
cient and proper management of crop production ecosystem. Tillage and crop rota-
tions have been extensively adopted in all agricultural systems, as these practices 
have the prospective to augment microbial biomass and activity. The soil organic 
matter (quantity, quality, and its distribution in the soil) is a major factor that strongly 
affects diversity, biomass, and activity of soil microorganisms as it is the basic food 
source for soil biota. Conservation agriculture-based practices such as zero tillage 
and reduced tillage systems are known to reduce land degradation through arresting 
soil erosion and enhancing SOC which sustains soil health  (Hobbs et  al. 2008). 
Usually, the microbial diversity is negatively correlated with intensity of till-
age (Yanping-Lei et al. 2017). The impact of soil tillage over microbial parameters 
of soil mostly determined through climate, location, and below as well as above 
environmental conditions. The explicit impact of these practices on microbial com-
munity composition is yet to be explored.
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9.5.5	 �Chemical Fertilization and Structure and Diversity of Soil 
Microbes

The soil microbial community structure may be defined as the abundances and rela-
tive proportions of important microflora in soil. This is further dependent on the 
type of the growth medium. Long-term fertilizer applications reported to have 
diverse effect on soil microbial communities. The effect can vary with the type of 
fertilizer used, their application doses, soil type, and other factors. Among the inor-
ganic fertilizers, nitrogen (N) improves crop yields, but at the same time, its con-
tinuous use for long periods considerably influences the quality and productivity of 
soil. Yu et  al. (2015) noted that combined application of organic-inorganic com-
pound fertilizers resulted in higher cultured bacteria population compared to soil 
fertilized using chemical fertilizers applied alone. The abundance of soil bacterial 
communities’ shows great difference between different months, viz., May, July, and 
November. However, irrespective of sampling time, the diversity of soil bacteria and 
actinomycetes was found maximum with organic-inorganic compound-fertilized 
soil compared to other soils. Conversely, responses to fertilization management 
practices were different for fungi, and highest values of fungal diversity were 
reported in the soil supplied with chemical N fertilizers.

9.5.6	 �Changes in Soil Microbial Community in Grassland 
Ecosystems of Temperate Climate

Grassland ecosystems are of great ecological significance due to their extended role 
in different ecosystem services associated with soil microbial community. The 
grassland systems of temperate climate are differing in terms of their microbial 
communities to the tropical grassland, and this variation appears to be ascribed to 
difference in microbial biomass carbon and metabolic quotient (qCO2) among them. 
The soil microbial activity which was accounted by measuring basal respiration 
may vary with the type of grassland, site interactions, and soil moisture. In improved 
grasslands the respiration rate was more, and it also reflected as low qCO2. 
Respiration in unimproved and semi-improved grasslands was extensively elevated 
in comparison to improved grasslands. The diversity and biomass of culturable bac-
teria, namely, pseudomonades, found maximum in the improved grasslands as com-
pared to degraded grasslands. Site distinctiveness of upland grasslands also reported 
to affect the diversity, biomass, and respiration of microbial communities. Microbial 
biomass carbon and respiration were significantly greater in the situation due to 
more rainfall in these grassland ecosystems (Zak et al. 1996). Variation in carbon 
density due to varying management options affects the size of the microbial bio-
mass carbon; it is consistently higher in the unimproved than in the improved grass-
land. The soil metabolic quotient (qCO2) was enhanced when the microbial biomass 
carbon is operating efficiently. It has been shown that microbial communities from 
virgin sites have higher qCO2 than those from operated sites (Anderson and Domsch 
1993; Grayston et al. 2001).
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9.5.7	 �Crop Rotational Diversity

The agricultural intensification that involved continuous adoption of cereal-based 
rotations without inclusion of legumes led to reductions in crop and soil productiv-
ity because of biodiversity loss. Crop rotation that involves legumes may decrease 
this negative impact by restoring positive above- and belowground interfaces and 
increase biodiversity. Constructive effect of different rotations on diversity and bio-
mass of aboveground microbes and processes had been observed in natural ecosys-
tems. Increased crop diversity with proper crop rotations may be the results of their 
favorable impact on physical, chemical, and biological soil properties. The increas-
ing rotational diversity also has positive effects on aggregate formation. So, use of 
rotational diversity as a feasible management practice for promoting soil sustain-
ability is an appropriate option (Smith et  al. 2014). Soil management practice 
intended to augment soil biological activity and C concentration also increases the 
stability of mega-aggregates. Study site has the fastest turnover rates and is the most 
susceptible to changes in management (Tiemann et al. 2015). The highly strong cor-
relation among fungal abundance and that of soil carbon and nitrogen density in the 
mega-aggregates further supports fungal contributions to soil structural stability 
(Fig. 9.2).

Higher cropping diversity

Greater quantity and 

quality of residues

Enhanced microbial 

activity

Increasing stocks of stable 

SOC and TN

Monocropping

Lesser quantity and quality 

of residues

Lower aggregation and 

stabilization

Lower microbial activity

Lower stocks of stable 

SOC and TN

Mega-aggregate 
formation and stabilization

Fig. 9.2  Trajectory of aggregate and SOM formation and stabilization under a high diversity rota-
tion versus monoculture crop
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9.6	 �Conclusions and Future Perspective

Soils are one of the most heterogeneous units of the biosphere. Soils also have enor-
mously high isolation of property and processes within nano- to macroscales. This 
chapter analyzed the properties, occurrence, and management of hotspot in soil. 
Long-term integrated fertilization enhances soil microbial diversity. With high avail-
ability of labile C and energy, the most important hotspots are the rhizosphere and 
detritusphere. In warmer climate, the concentrated release of C in root-detritusphere 
zone leads to broader hotspot area and distribution in the root-detritusphere than in the 
rhizosphere. Although areas occupied by hotspots are very small (1–5%) compared to 
bulk soil, but this is compensated by very high process rate in hotspots (up to two 
times higher). The effect of bacterial competition on straw decomposition accounts 
for the strong influence of moisture on bacterial community structure. Interactions 
between rotational and microbial diversity have a positive influence on functional 
relationships of biodiversity in agroecosystems. Thus, microbial hotspot management 
is important in soil sustainability and food security.
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Abstract
The agricultural productivity is a serious concern to meet the ever-increasing 
demands of growing human population all over the world. Thus, to attain sus-
tainable agriculture, without harming the environment, use of different green 
compounds is a prerequisite. This chapter highlights the use of surfactins as a 
biocontrol agent, which is an eco-friendly and cost-effective approach for man-
aging plant diseases. Biosurfactants especially surfactin produced by Bacillus 
and Pseudomonas species can serve as green surfactants, and they exhibit wide 
biocontrol activity. Surfactins are eco-friendly and less toxic and thereby have 
several widespread applications in food, agriculture, cosmetics, and pharmaceu-
tical industries. Several rhizosphere and plant-associated microbes capable of 
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producing surfactin play vital role in motility, signaling, and biofilm formation, 
indicating that biosurfactants (surfactins) direct plant-microbe interaction. In 
agriculture, surfactins can be used against plant pathogens as biocontrol agents 
and for increase in the bioavailability of nutrient for beneficial plant-associated 
microbes. Particularly, antifungal activity of surfactins and their role in surface 
colonization by pathogens and beneficial bacteria results in biocontrol activity. 
Therefore, exploring surfactins from bacterial isolates for applications in agricul-
ture warrants a detailed research.

Keywords
Surfactins · Sustainable agriculture · Plant pathogens · Surfactin production · IS

10.1	 �Introduction

Excessive use of chemical pesticides in current decade has not only led to contami-
nation of land and water resources but also caused ecological imbalance of soil 
microbes, thus promoting the development of resistant pathogenic strains posing 
tremendous threat to human health and environment. The continuous health and 
environmental hazards incited a persistent quest of alternative biocontrol agents 
such as biosurfactants which can be used for preservation of food and dairy prod-
ucts and agricultural applications (Mandal et al. 2013).

Biosurfactants are amphipathic molecules considered as multifunctional materi-
als of the twenty-first century due to their numerous properties of practical utility in 
industry, environment, and agriculture (Santos et al. 2016). These are produced by 
a variety of microorganisms specifically the members of the Pseudomonas and 
Bacillus species (Kloepper et al. 2004). Three Bacillus-derived lipopeptide families, 
i.e., surfactin, iturin, and fengycin, hold special significance in this context for their 
efficacy against different pathogens of economically important plants (Ongena and 
Jacques 2008), viz., direct inhibition of phytopathogens and induced systemic resis-
tance (ISR).

Surfactin produced by strains of B. subtilis is the main representative of lipopep-
tides with anionic properties. Surfactin is named due to its excellent surface active 
properties, and it is one of the most important biosurfactants of microbial origin 
with strong emulsification properties. Surfactin discovered by Arima et al. (1968) 
was identified as macrolide lipopeptide through molecular characterization by 
Kakinuma et al. (1969). It is amphiphilic compound having tendency to exist in both 
hydrophobic and hydrophilic environments (Ishigami et al. 1995). It exhibits sig-
nificant membrane dynamics and surface-interface characteristics leading to excel-
lent applications in biotechnology-based processes, environmental pollution 
management, and pharmaceutical industry (Nitschke and Costa 2007; Abdel-
Mawgoud et al. 2008; Banat et al. 2010; Cao et al. 2010; Mulligan 2009).

Surfactin is a cyclic lipoheptapeptide (Glu-Leu-Leu-Val-Asp-Leu-Leu) having 
LLDLLDL (chiral sequence) interweaved hydroxy fatty acid having chain length of 
C-12 to C-16 carbon to form a cyclic lactone ring structure (Seydlova et al. 2011). 
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Depending on the size of lipids and amino acid arrangement, the surfactin type may 
vary (Korenblum et  al. 2012). Amino acids are positioned at 2, 3, 4, 6, and 7, 
whereas the Glu and Asp residues are positioned at 1 and 5, respectively. Generally, 
isoforms of surfactin do exist with numerous peptidic variants having difference in 
length of aliphatic chain (Tang et al. 2007). The configuration of β-hydroxy fatty 
acids and amino acids in the surfactin is dependent on the bacterial producer strain 
and nature of culture conditions (Seydlova et al. 2011). The function and release of 
biosurfactant(s) are linked with uptake of hydrocarbons, so hydrocarbon-degrading 
microorganisms mostly synthesize them (Banat et al. 2010).

10.2	 �Production of Surfactin

Natural surfactins are less toxic than the synthetic ones with an added advantage of 
biodegradability. Surfactin production by various strains of Bacillus subtilis is man-
ifested by Srf A operon, sfp, and com A (Rongswang et al. 2002). The srf A operon 
encodes a protein which forms a surfactin synthetase (non-ribosomal peptide syn-
thetase) (Cosmina et al. 1993). Whereas, com A encrypts a srf A gene transcription 
activator (Roggiani and Dubnaum 1993), and sfp is srf A activation enzyme which 
encodes 4/-phosphopantetheinyl transferase (Nakano et al. 1992; Lambalot et  al. 
1996) which catalyzes the conversion of the inactive proteins of surfactin synthetase 
to active forms (Pfeifer et al. 2001).

Abiotic factors such as oxygen availability, variation in temperature, and growth 
medium constituents which influence the growth and activity of microbial cells 
also influence the surfactin production (Cameotra and Makkar 1998). Biosurfactin 
production by bacterial strains is dependent on availability and absence of many 
micronutrients. For instance, limitation of iron stimulates biosurfactant production 
in Pseudomonas fluorescens (Persson et al., 1990a, b) and P. aeruginosa (Guerra-
Santos et al., 1984, 1986). Whereas, addition of manganese and iron salts leads to 
the production of biosurfactants in both Rhodococcus sp. and B. subtilis (Cameotra 
and Makkar 1998). pH plays a crucial role in biosurfactin production. For instance, 
sophorolipid production in T. bombicola is stimulated by the pH of medium 
(Guerra-Santos et  al. 1984). Pseudomonas sp. produces maximum quantity of 
rhamnolipids at pH ranging 6.0–6.5, while further increase in pH 7.0 results in 
significant reduction of rhamnolipid synthesis (Guerra-Santos et al. 1984). Bacillus 
spp. grown in optimal pH for production of surfactin yields about 0.1 g/liter of 
surfactin (Fig. 10.1).

The major concern in marketing of surfactins is higher production cost which 
cannot be compared with chemical surfactants. Different approaches have been 
practiced to make it economical, such as the optimization of fermentation environ-
ment, downstream processing, usage of inexpensive and waste substrates, and the 
growth of efficient surfactin-producing strains (Banat et al. 2010). Studies report 
surfactin production using Pharma media or semisynthetic medium (Al-Ajlani 
et  al. 2007) composed of 2% glucose as the carbon (C) source and 5  g L−1 of 
L-glutamic acid as the nitrogen (N) source and trace metals (Nakano et al. 1992), 
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complemented with yeast extract (0.1%). Mainly, the requirement of mineral was 
beneficial for the surfactin production (Wei et  al. 2007). Cheap and renewable 
sources for surfactin production have been derived from agro-industrial crops such 
as sugar beet, soybean, potato, cassava (Noah et al. 2005), wheat, maize, sorghum, 
and rice. Vegetable oils, dairy wastes, and distillery fresh apple juice result in 
higher yields of surfactin, e.g., 2000 mg L−1 and 3500 mg L−1(Mulligan and Gibbs 
1993; Ponte et al. 2009). Purification, concentration, and recovery play a signifi-
cant role in the overall cost of surfactin production (Mukherjee et al. 2006). Solvent 
extraction, acidic precipitation, and purification through chromatographic tech-
niques, e.g., TLC, HPLC, and LCMS, are the main procedures for surfactin isola-
tion. Numerous advanced techniques for surfactin purification and recovery have 
been developed, together with diverse nanofiltration and ultrafiltration combina-
tions through polymeric membranes (Shaligram and Singhal 2010). Significantly 
higher yield of surfactin purification and recovery was achieved, showing tremen-
dous potential for industrial applications (Isa et al. 2007; Chen et al. 2008; Juang 
et al. 2008; Shaligram and Singhal 2010).

Fig. 10.1  The surfactin biosynthetic assembly line (Adopted from Chiocchini 2006). (a) The 
surfactin biosynthetic gene cluster of Bacillus subtilis encodes for the non-ribosomal protein tem-
plate for the synthesis of the lipoheptapetide surfactin. (b) This biosynthetic complex consists of 
three surfactin synthetases, SrfA-A, SrfA-B, and SrfA-C, consisting of seven distinct modules, 
each responsible for recognition, activation, and loading of a single amino acid substrate. Two 
epimerization domains are found in modules 3 and 6, converting L-Leu into the stereoisomer 
D-Leu, respectively. The cyclization and release of the final heptapeptide as macrolactone are cata-
lyzed by the TE domain. (c) In different colors the single domains are represented
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10.3	 �Applications of Surfactin in Agriculture

Although biosurfactants have received much attention at present because of their 
potentials in bioremediation such as degradation of pesticides, hydrocarbons, and 
soil augmentation, they hold promise for application in agriculture because of their 
capability to enhance biocontrol potential of microbial strain, elimination of biofilm-
forming pathogens in animal and poultry feed (Cheng et al. 2018), eradication 
of weeds, inhibition of aflatoxin production, antagonism of phytopathogens 
(Nihorimbere et al. 2011), and induction of systemic resistance (Desoignies et al. 
2013). In addition biosurfactants are used for wetting, dispersion, suspension, and 
emulsification of pesticides and fertilizers and increasing the bioavailability of 
nutrients for promoting growth of beneficial microorganisms in soil (Sachdev and 
Cameotra 2013).

10.4	 �Biocontrol of Plant Pathogens

One of the most important properties of biosurfactants which makes them poten-
tially useful in agriculture is their capability of interacting with membrane lipids. 
Surfactin being a biosurfactant displays its biocontrol activity by attaching to the 
lipid bilayers because of its cation-binding capability. Furthermore, it solubilizes 
membrane either by acting as detergent or modification of membrane permeability. 
Surfactin enters in lipid bilayer via hydrophobic interactions; thus both thickness 
of membrane and arrangement of hydrocarbon chains are affected (Bernheim and 
Avigad 1970; Maget-Dana and Ptak 1995).When surfactin penetrates in membrane 
it results in the dehydration of polar head groups of phospholipids, disturbing 
the packing of lipids and lipid bilayer stability. These changes in structure lead 
to membrane instability, hence rupturing the target pathogenic microorganism 
(Carrillo et al. 2003).

Surfactin and its isoforms exhibit strong antibacterial, antifungal, antiviral, and 
antimycoplasma activities (Mulligan 2005; Haddad et al. 2009) which can be uti-
lized to eliminate phytopathogens and feed contaminants. Surfactin produced by 
marine Bacillus circulans (Das et al., 2008) and B. subtilis R14 strain (Fernandes 
et  al., 2007) was found to be antagonistic against multidrug-resistant bacterial 
strains of Alcaligenes faecalis, E. coli, P. aeruginosa, and methicillin-resistant S. 
aureus. The minimum bactericidal concentrations (MBC) and minimum inhibition 
concentrations (MIC) used were less than that of the conventional antibiotics tested 
at the same time (Das et  al. 2008). Studies using surfactin-negative mutants of 
Bacillus subtilis indicated that surfactin is major role-player in combating bacterial 
fruit blotch disease in melon (Fan et al. 2017).

Surfactin deserves special attention due to high biodegradability, eco-friendly 
behavior, low toxicity, and significant antifungal activity against various phytopatho-
gens (Yu et al. 2002; Athukorala et al. 2009). Surfactin purified from Bacillus sp. 
showed efficient antagonistic activity against Fusarium oxysporum, F. moniliforme, 
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F. solani, and Trichoderma spp. (Sarwar et  al. 2018). Surfactin extracted from 
Bacillus licheniformis BC98 was found to antagonize Magnaporthe grisea in in vitro 
assays (Tendulkar et al. 2007).

10.5	 �Antibiofilm and Anti-adhesion Properties

Biofilm formation and surface adhesion are important mechanisms for survival of 
bacteria in the environment. Bacterial population is capable of surviving in extreme 
conditions of the environment by biofilm formation (Morikawa 2006). In addition 
to antiviral and antimicrobial activities, surfactins are proven inhibitors of microbial 
adhesion and biofilm formation (Mireles et  al. 2001). Surfactin from strain of 
Bacillus circulans exhibited anti-adhesion activity against different species of bac-
teria such as Escherichia coli, Salmonella enterica, Salmonella typhimurium, and 
Proteus mirabilis (Das et al., 2008). For instance, biofilm formation in two selected 
pathogenic strains of E. coli and S. aureus was reduced to 90% and 97%, respec-
tively, on polystyrene due to anti-adhesion activity of surfactin (Rivardo et al. 2009). 
Anionic nature of surfactins could lead to electrostatic repulsion between molecules 
of surfactin and the bacteria adsorbed onto the surface of polystyrene. Thus, it looks 
that surfactin has potential as an anti-adhesive compound that can be used to defend 
the surfaces from microbial contamination (Zeraik and Nitschke 2010). In addi-
tional studies, synergistic interactions were observed between silver and surfactin, 
acting as active antibiofilm agents. Solubility of metal is increased due to negative 
charge of surfactin and could therefore enable the exopolymeric substance penetra-
tion in encapsulated biofilm (Rivardo et al. 2010). This outcome confirms the poten-
tial of surfactin as anti-adhesive compound that can prevent microbial contamination 
in food and feed.

10.6	 �Induction of Systemic Resistance

Besides having antagonistic and cytotoxic activities surfactin has been reported as a 
powerful inducer of systemic resistance in crop plants such as tomato, tobacco, 
bean, and beet against various phytopathogens (Ongena and Jacques 2008; Jourdan 
et al. 2009; Le Mire et al. 2018). For instance, application of surfactin at micromolar 
concentrations led to the elicitation of early defense responses, induction of defense-
related enzymes phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), and 
the production of the plant defense hormone salicylic acid in tobacco cell suspen-
sions (Jourdan et al. 2009). However, there are only few reports on role of surfactins 
as elicitors of induced resistance in major monocotyledonous plants (Balmer et al. 
2013). In a recent study, surfactin has been investigated as a potential elicitor of ISR 
by activating both salicylic acid- and jasmonic acid-dependent defense response in 
winter wheat against the Septoria tritici blotch (STB) disease causative agent 
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Zymoseptoria tritici (Le Mire et al., 2018). However more studies are required to 
elucidate the role and exact mode of action of surfactins as ISR elicitors in various 
crop plants.

10.7	 �Inhibition of Aflatoxin Production

Aflatoxins are a group of polyketide-derived furanocoumarins which are the most 
toxic and carcinogenic compounds among the known mycotoxins produced by vari-
ous Aspergillus species A. flavus and A. parasiticus (Farzaneh et al. 2016). Aflatoxins 
are primarily produced in agricultural commodities like corn, cotton seeds, and pea-
nuts in the field and during storage. Consumption of agricultural products contami-
nated with aflatoxins can cause mycotoxicosis in humans and farm animals 
(Mukherjee et al. 2006). In this context control of aflatoxin producing fungi is one 
of the most important strategies in the prevention of mycotoxin contamination in 
food crops. Biosurfactants can be metabolites of choice in this scenario because of 
their known antifungal properties. These can kill fungi by increasing membrane 
permeability and inhibition of spore germination. For instance, surfactin can cause 
irreversible pore formation in fungal membrane when used at a higher concentra-
tion, thus resulting in increase in permeability of the membrane leading to the rup-
turing of membrane and bursting of cells of A. flavus in pistachio nuts (Farzaneh 
et al. 2016).

10.8	 �Improvement in Root Colonization and Growth of PGPR

Root colonization is one of the most important attributes of plant growth-promoting 
rhizobacteria (PGPR). It is very important for the PGPR to colonize plant root in 
order to provide beneficial effects to the plants. The association of PGPR with plant 
roots is governed by several factors such as microbial motility, biofilm formation, 
and secretion of root exudates by plants and quorum-sensing molecules such as 
acyl-homoserine lactone (AHL). In addition to this, biosurfactants have been 
reported to enhance the motility, signaling, and biofilm formation of PGPRs indicat-
ing their importance in promoting efficient root colonization and consequent 
improvement in plant health afforded by PGPRs. Besides that biosurfactants 
increase the bioavailability of nutrients in soil by providing wettability and proper 
distribution of chemical fertilizers in soil (Sachdev and Cameotra 2013). This not 
only enhances the growth of beneficial microorganisms in soil but also promotes 
plant growth, thus playing an essential role in sustainable agricultural practices. 
Surfactin also supports colonization of surface through biofilm formation and 
improving acquisition of nutrients through surface wetting and emulsification prop-
erties. Like other biosurfactants, surfactins have been reported to enhance plant root 
colonization capability of Bacillus subtilis strains in wheat (Le Mire et al. 2018) and 
Bacillus amyloliquefaciens in Arabidopsis thaliana (Dietel et al., 2013).
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10.9	 �Conclusion and Future Perspectives

Surfactins have significant applications in sustainable agriculture, but the use of 
environment-friendly surfactins is rare. Role of surfactins in biological control is 
under intensive investigations nowadays. As mentioned above surfactin applications 
could be useful in food preservation, antibiosis, and plant disease suppression. 
Surfactin appears to be a promising biocontrol agent in agriculture practices and 
could be used to develop eco-friendly biopesticides for replacing harmful chemical 
pesticides. The higher occurrence of surfactins and surfactin producing rhizobacte-
ria is strong evidence for its effective role in sustainable agriculture. In literature, 
Bacillus and Pseudomonas species are main surfactin producers demonstrating that 
only two genera are studied up till now. Some modern approaches, for example, 
functional metagenomics, can help in the discovery of surfactins. Therefore, we can 
conclude that a collective contribution by researchers from different fields, for 
instance, microbiology, biochemistry, molecular biology, environmental sciences, 
and computational biology, is requisite.
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Abstract
The plant growth-promoting rhizobacteria (PGPRs) are very important for the 
ecosystem, so there is a need to study their diversity and functions. The yield and 
growth of different plants and crop varieties have been improved with various 
PGPR strains. The specific agricultural and environmental issues are addressed 
by applying specialized strains of the PGPRs. The development of efficient new 
techniques to identify PGPRs is greatly needed. The new techniques are mostly 
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based on molecular level to study PGPRs which may reduce the time of detec-
tions from days or weeks to hours. These techniques are extremely specific, 
selective, and reliable to detect PGPRs. The link between function and structure 
of the PGPRs can be identified with these methods, and efficiency of using 
PGPRs in improving different crop varieties and plants is increased. In this chap-
ter, different molecular approaches available to study PGPRs will be discussed.

Keywords
Plant growth-promoting rhizobacteria · Biotechnology · Genomics, soil microor-
ganisms · Biosensors

11.1	 �Introduction

The soil zone around the plant roots, having high microbial activity, characterized 
by the countless range of dynamic and complex biological, physical, and chemical 
interactions is called as rhizosphere. In the rhizosphere, microbes have a significant 
role in the plant nutrient cycle and organic matter transformation. A wide range of 
bacterial/rhizobacterial species develop interactions with host plants for improving 
plant nutrition, growth, and suppression of disease (Pii et al. 2015). So, many studies 
have been done for isolating PGPRs and for determining their activities in the 
rhizospheric soil (Verma et al. 2018a).

The PGPRs have gained importance because of their simple mode of action, low 
cost, and easy access. The PGPRs can be applied on plants, and they always exert a 
positive impact on their growth (Verma et  al. 2018b). The biological nitrogen 
fixation (Porte et  al. 2017), production of phytohormones (Park et  al. 2017), 
phytopathogen control (Pérez-De-Luque et  al. 2017), and K, Zn, and phosphate 
solubilization (Lagos et  al. 2015) are some main features of PGPRs. As phyto-
stimulators, phytopathogen biocontrol agent, rhizo-mediators, and biofertilizers, 
the PGPRs can be used as alternatives/substitutes for agrochemicals. Despite of the 
fact that PGPRs are eco-friendly, their mass-level application is limited in agriculture 
due to their less efficiency (Babalola 2010) under field conditions.

About the distribution, communication, diversity, and competence of PGPRs, 
limited information is available, but the interest of using them in increasing crop 
production has gained importance worldwide (Lagos et  al. 2015). Thousands of 
different fungal, archaeal, viral, and bacterial taxa are available in the rhizosphere; 
however, only 1% of the soil microbes have been cultured actually (Elsas and 
Boersma 2011). The characterization, composition, and functions of PGPRs in 
higher resolution are possible by Illumina and Roche 454 sequencing platforms 
which are next-generation sequencing tools. The genomes of unculturable PGPRs 
and their novel products can be identified with metagenomics approaches (Lagos 
et al. 2015). At the specific root zone, the microbial population and its role in the 
plant growth, health, and nutrient uptake can be determined. By using protein 
(metaproteomics) and RNA (metatranscriptomics), soil microbial functionality can 
be inferred (Bastida et al. 2009).

M. Ijaz et al.



www.manaraa.com

217

Current information about the role of PGPRs in plant growth has been discussed 
in this chapter. The use of advanced molecular biology and biotechnology techniques 
to manipulate plant microbe interaction is also described here with some future 
prospects.

11.2	 �Applications of PGPRs in Agriculture

After application of the PGPRs in plants, morphological and biochemical altera-
tions occur that lead to increase in abiotic stress tolerance, and this phenomenon 
is called induced systemic tolerance (IST) (Etesami and Maheshwari 2018). The 
plant growth is badly affected by several factors called stress. Production of reac-
tive oxygen species (ROS), for example, H2O2, OH radicals, and superoxide, is 
high due to stress conditions. Oxidative stress affects plant growth via oxidizing 
membrane lipid, nucleic acid, pigments, and proteins (Gouda et al. 2018). Through 
different processes, PGPRs enhance plant growth and help to fight abiotic stresses 
like ACC deaminase formation and slow down the formation of harmful ethylene, 
changes in the content of plant hormone, introduction of enzymes against ROS 
(antioxidative enzymes), development/progress in absorbance of necessary nutri-
ents, extracellular polymeric substances (EPS) formation, increased production of 
elements necessary for growth, etc. (Etesami and Maheshwari 2018). For exam-
ple, insoluble nickel is released by some PGPRs, capable of accumulating in 
plants (Ahemad and Kibret 2014) and adding resistant genes against abiotic 
stresses (Etesami and Maheshwari 2018). The PGPRs that are needed to be com-
mercialized must have the capability of competing with other microbes for 
increasing growth of plants, heat tolerance, resistance for UV radiation and com-
bating with reacting agents (Ortega et al. 2017).

PGPRs have ability to produce antibiotics against microbes which are harmful 
to plants. The propagation of lethal plant microbes is controlled by kanosamine, 
zwittermicin A, and xanthobaccine synthesis via Bacillus, Stenotrophomonas, and 
Streptomyces, respectively (Gupta et al. 2015). For the establishment of PGPRs, 
there are multiple choices. Nanoencapsulation technology helps to save and permit 
more precise discharge of PGPRs. The trials which alter the genetic material 
increase the functions and formation of PGPRs (Ortega et al. 2017). Production 
and growth of crops is increased by reutilizing nutrients present in soil. It is per-
formed through rhizobacteria which are essential to improve richness of soil 
(Nehra and Choudhary 2015). Development and growth of plant is regulated by 
PGPRS. Phytohormones synthesized by rhizobacteria are cytokinin, auxins, ethyl-
ene, and gibberellins; these substances have positive effects on root development 
by increasing the root hairs, number of lateral roots, and absorbance of water and 
essential elements (Gupta et al. 2015).

Plants synthesize vitamins for better development. During unfavorable condi-
tions, production of vitamins decreases, while the microbial strains help to promote 
their growth. Different vitamins produce by Bacillus species (pantothenic acid, 
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riboflavin, biotin, and thiamine) can be taken up by roots (Shameer and Prasad 2018). 
Plant growth and formation of important nutrients is mainly depending on nitrogen. 
The efficient PGPR Rhizobium sp., a cluster of bacteria which is present in soil 
mainly near the origin of leguminous plants, helps to resolve the atmospheric nitro-
gen (Kumar et al. 2015). Pseudomonas putida in maize increases the weight of seed, 
height of plant, area, number of kernel per cob, and dry weight of shoot (Ahemad 
and Kibret 2014).

PGPRs are commonly used as biofertilizers which decrease the requirements of 
biochemical manure, drop antagonistic ecological effects, and enhance soil 
efficiency status. Various rhizobacteria containing luminous Pseudomonas discharge 
different types of antifungal particles during in  vitro state. The bacteria isolated 
from rhizosphere are very efficient to control pathogenic fungi. The nodule region 
and rhizosphere of tea (Camellia sinensis), favorable  environment for PGPR 
straining characterized by Proteus, Pseudomonas, and Bacillus, suppress the 
pathogenesis of Fusarium oxysporum in plants. Inhibition of plant microorganisms, 
which are found in soil, via high-affinity iron-chelating molecule (produced by 
fungi and bacteria, transport iron molecule across the cell membrane) was detected, 
and the mutant-type rinsing was highly active in repressing infection contrast to 
non-siderophore manufacturing mutants (Kumar et  al. 2015). Alginate is usually 
used for bacterial cell encapsulation. It is produced by microbes like Pseudomonas 
and Azotobacter. The alginate bead has catalytic capability and keeps the cell viable 
for long time. Alginate beads capture the abundant microbes and help to protect 
them from biotic stress (Nehra and Choudhary 2015). When temperatures of soil 
decrease, fungal microorganisms are very virulent.

In the field, biocontrol PGPRs which have the ability to bear cold environment 
are probably more active. Additionally, in freezing areas and where winter is 
prolonged, PGPRs should be very potent to face the environment either it may be 
cooler or warmer. Scientist described that PGPRs including psychrophilic and 
psychrotrophic pathogens produced anti-freezing substances in soil, which 
accumulated in close proximity to the cell in order to protect the bacteria (Shameer 
and Prasad 2018).

11.3	 �Techniques to Study PGPRs

The PGPRs can be studied by different techniques such as phenotypic and molecu-
lar which help to identify and characterize them. It is very difficult to get the com-
plete information by using phenotypic approaches, so it is suggested to use methods 
for better understanding of functions of PGPRs (Table 11.1).

11.3.1	 �Phenotypic Techniques

The physiological, biochemical, and morphological properties of PGPRs define their 
phenotypic characteristics. Conventional phenotypic trials consider the microscopic 
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appearance of bacterial cells (endospore, shape, inclusion bodies, and flagella), col-
ony morphology (form, color, and dimension), vulnerability of microbes against 
antimicrobial agents, the microbial growth range in different conditions (temperature 
and pH), and different properties of microbes on various growth substrates. Even the 
Gram reaction is a valuable diagnostic tool to analyze the composition of the cell 
wall. According to the bacterial strain being studied, many other tests can be per-
formed (Rodríguez-Díaz et al. 2008). The short versions of conventional biochemi-
cal assessments (such as biolog plates, API kits, and VITEK cards) are available to 
perform taxonomical studies and are mostly composed of dehydrated agents. The 
reaction is started after the addition of standardized inoculum.

As the percentage of culturable PGPRs is too low, non-culturable techniques like 
phospholipid fatty acid analysis (PFLA) may also be used (Stazi et al. 2015). Maybe 
it is not possible to detect the specific strains or species by this method, but the 
variations in concentration of fatty acids can depict the difference between various 
microbial groups. Hence, there are some limitations of using these technologies as 
described below: the reproducibility of results, based on phenotypic examination in 
different laboratories while working on PGPRs, is a big challenge. The nature of the 
microbes is another disadvantage of using phenotypic approaches. Therefore, it is 

Table 11.1  Advantages and disadvantages of different approaches used for PGPR detection

Techniques Analyses Advantages Disadvantages References
Phenotypic 
techniques

Microbial respiration, gram 
staining, biochemical tests 
(e.g., biolog plates and 
VITEK cards), phospholipid 
fatty acid analysis (PLFA), 
and ATP level assay

Short time 
period is 
required for 
performing 
all these 
analyses

Any change in 
environmental 
conditions can 
change the 
phenotypic 
characteristics, 
and 
reproducibility is 
very difficult

Modi and 
Jacob 
(2017)

Molecular 
techniques

Ribosomal RNA sequencing, 
real-time PCR, finger printing 
(denaturing gradient gel 
electrophoresis (DGGE), 
single-strand conformation 
polymorphism (SCCP), and 
terminal restriction fragment 
length polymorphism 
(TRFLP)), biosensors 
(immunosensors), BioMEMS, 
proteomics, and DNA 
microarray

Rapid, 
sensitive, 
specific, and 
identify 
accurate 
homology

Live material is 
required as 
prerequisite, 
complex analysis 
and absence of 
regulatory factors 
during in vitro 
analyses

Lagos 
et al. 
(2015)

Recent 
molecular 
techniques

Metabolomics, metagenomics 
(Roche 454 pyrosequencing 
platform and Illumina 
sequencer), 
metatranscriptomics, and 
metaproteomics

High-
throughput 
and highly 
sensitive 
techniques

Highly expensive 
techniques and 
sometimes give 
false-positive 
results

Verma 
et al. 
(2018a)
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necessary to compare the results obtained with the results of similar type of experi-
ments performed on closely related microbes.

11.3.2	 �Molecular Techniques to Study PGPRs

The functions and diversity of PGPRs, studied through a wide range of valuable 
molecular tools, have gained importance (Hill et al. 2000). But the partialities of all 
molecular techniques must be measured and estimated before their application on 
rhizobacteria. The general scheme of analysis of PGPRs is given in Fig. 11.1.

11.3.2.1	 �Quantitative PCR (qPCR)
The specific genes and their level of expression can be detected and quantified either 
from DNA or RNA samples that are obtained from different environments by a 
widely used molecular technique known as quantitative PCR (qPCR). It is a quite 
sensitive technique. In the rhizosphere samples, the concentration of RNA or DNA 
may be very low for correct quantification and detection. The primer specificity and 
efficiency of amplification are some limitations that are responsible for the false 
results in real-time PCR (Marschner et  al. 2011). However, the distribution of a 
particular type of PGPRs and their genes in bulk soils and rhizosphere can be studied 
by this technique (Elsas and Boersma 2011). The quantification and detection of 
functional genes, responsible for various processes in rhizosphere like biocontrol of 
phytopathogen and nutrient cycling, can be easily determined by real-time PCR.

The Pseudomonas species are used as model organisms to study plant-microbe 
interaction in rhizosphere to identify gene expression. Some bacterial genes from 

Fig. 11.1  The general diagrammatic analysis of PGPRs
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the Pseudomonas species were introduced in rhizosphere in response to the root 
exudates (Barret et  al. 2011). These genes are responsible for controlling cell 
motility, signal transduction, and metabolism and perform some unknown functions 
too. An example is 2,4-diacetylphloroglucinol (2,4-DAPG) genes that can 
characterize and quantify the genotypes of Pseudomonas glow in the rhizosphere 
(Mavrodi et al. 2007).

11.3.2.2	 �Fingerprinting
A molecular technique that is used for the identification purposes, based on base 
pair pattern of individual strain, is called fingerprinting. In the rhizosphere, many 
colonies of PGPRs are present that can be premeditated by various PCR-based 
fingerprinting practices, like denaturing gradient gel electrophoresis (DGGE), 
single-strand conformation polymorphism (SCCP), and terminal restriction 
fragment length polymorphism (TRFLP) (Berlec 2012). Both active and inactive 
types of rhizobacteria can be studied by these techniques but only when they are 
present dominantly among different bacterial colonies. As compared to DGGE, the 
TRFLP is less effective for the assessment of diversity in bacterial colonies, but 
TRFLP is good for comparing many samples at the same time. The amplification of 
16S-rRNA by PCR provides the base for fingerprinting techniques, but the gene 
copy number of 16S-rRNA is different in various PGPRs, ranging from 1 to 15, and 
it depends upon their life strategies. For example, the taxa having less copy number 
of 16S-rRNA can easily survive in the environments that have low nutrient value 
(Lagos et al. 2015).

11.3.2.3	 �Microarray
High-throughput analysis of the complete set of genes that are arranged in a definite 
pattern and used for genetic analysis is known as microarray. The microbial activity 
in the rhizosphere can be studied by transcriptome profile analysis by microarray 
and give information about gene expression responsible for synthesis of these 
signals (Wu et al. 2011). It is a sensitive and rapid technique to detect the PGPRs by 
high-throughput means. It is used for the analysis of multiple samples simultaneously 
by hybridizing multiple fragments of DNA on a single chip of microarray (Lee et al. 
2008). The nucleic acids, such as cDNA, oligonucleotides, and genomic DNA, are 
immobilized on nylon membrane or glass slides to develop a well-ordered two-
dimensional matrix for microarray analysis. By using robotic micro-deposition of 
(0.5–2 kb) cDNAs that are amplified by PCR or by combinational chemistry, DNA 
is synthesized on the glass surface in situ.

Enzymatically or fluorescently labeled DNA probe is hybridized with the library 
of microarray and can be detected by enzyme-mediated detection system or 
fluorescence scanning. Though it is very expensive, it is used due to better resolution 
that is up to the strain level. It can identify diverse sequences from a complex DNA 
mixture simultaneously, and it can also compare many samples in one go. Hence, 
there are some limitations such as nonspecific binding, matrix-associated inhibitors, 
cross-hybridization, and sample size which are needed to be addressed (Stazi et al. 
2015). The Pseudomonas aeruginosa is a gram-negative bacterium that is present 
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everywhere and is analyzed by its transcript profiles via microarray for detecting its 
motility (Tremblay and Déziel 2010).

The results represented that most of the colonies showed downregulation of the 
genes linked with virulence and upregulation of the genes concerned for the energy 
metabolism. The study of Azospirillum brasilense transcriptome demonstrated that 
indole-3-acetic acid (auxin) is a signaling molecule which disturbs cell surface 
protein and accumulated transport proteins (van Puyvelde et al. 2011). However, the 
microarray technology depends on the known genes of bacterial species. So, 
microarray cannot provide efficient information about functions of unknown genes 
of bacteria and distribution in the environment. The analysis of transcriptome profile 
by microarray of strain BH72 which belongs to Azoarcus species at the time when 
it is exposed to root exudates secreted by rice showed that 2.0% and 2.4% of genes 
are downregulated and upregulated, respectively (Shidore et al. 2012). A schematic 
chart of sample analysis using microarray technique is discussed (Fig. 11.2).

11.3.2.4	 �Bio-microelectromechanical Systems (BioMEMS)
The microscale or nanoscale fabrication is involved in the designing of BioMEMS.

These are used to identify the separation, growth, purification, manipulation, and 
immobilization of single and multiple bacterial cells, toxins, and other biomolecules 
secreted by the PGPRs. It is also used to detect soil pollution (Stazi et al. 2015).

11.3.2.5	 �Biosensors
The bacterial cells that have a reporter gene, typically a fluorescent marker-like 
green fluorescent protein (GFP), are defined as biosensors (Sørensen et al. 2009). 
The colonization of bacteria and activity can be detected at single-cell level by 
confocal microscopy and epifluorescence microscopy. The rhizosphere colonization 
can be monitored and localized successfully by introducing GFP-tagged plasmids in 
Enterobacter cowanii strain PRF116, Pseudomonas putida strain PRD16, and some 
endophytic bacteria (Götz et al. 2006). The investigation on P. putida strain W619 
tagged with GFP showed that it is not involved in promoting growth (Weyens et al. 
2012).

But, there are problems like reporter genes that are present in very limited num-
ber, sample preparation can alter the performance of biosensor, and detection can be 
limited due to high background fluorescence (Marschner et al. 2011). The immuno-
sensor (immune response-based biosensor) is also an important type of biosensors. 
The immune response is induced by many lipopolysaccharides that are present on 
the surface of PGPRs like Pseudomonas species.

The PGPRs are analyzed by using this property via ELISA and an immunosensor 
which is based on the antigen-antibody interaction, known as piezoelectric biosensor 
(Agrawal et al. 2012). The step of washing or adding detergents can be eliminated, 
and the analysis can be done faster by quartz crystal microbalance (QSM). It works 
on the principle of coating the sensor surface with specific antibody and allowing 
the sensor to contact with bacterial suspension.
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The bacteria present in the suspension bind with the sensor with high specificity. 
As a result, the mass of the sensor is increased, and the resonance frequency of the 
bacteria is decreased due to decreasing bacterial population in the culture. Most of 
the biosensors are designed to reuse multiple times without losing their activity 
because of the high prices of piezoelectric crystals. The immunosensors are very 
efficient systems that have multiple applications in the fields of clinical diagnostics, 
environmental monitoring, biotechnology, and food industry. The efficiency of 
QCM biosensor is enhanced by using silver nanoparticles (Choudhary et al. 2010). 

Fig. 11.2  A schematic chart of sample analysis through microarray technique
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It is also reported that the antigen-antibody binding sensors are more efficient and 
versatile as compared to nucleotide-binding-based sensors. The identification and 
detection of PGPRs by antibodies need a reporting system that can calculate the 
ratio of microbe-antibody binding, amplify the reaction, and transduce it in the sig-
nals (Stazi et al. 2015).

11.3.2.6	 �Proteomics
The total protein complement present in a cell is called its proteome that can be used 
to evaluate gene expression, determine the location of the protein, and identify the 
posttranslational modifications, and it is collectively called proteomics. But 
extraction of intracellular proteins from the soil to detect PGPRs is not an easy task 
due to several reasons;  (1)  proteins can be degraded by proteolytic enzymes, 
(2) tightly adhered with soil minerals, (3) combined with humic acids, and (4) form 
soil colloids. These  all situations may  cause hindrance in the analysis (Arenella 
et al. 2014). As a result of microbial activity, only 4% of the total soil nitrogen is 
produced from intracellular protein, but when protein is stabilized with surface 
reactive particles it enhanced up to 30–50% (Nannipieri 2014). At the time of sam-
pling, characterization of intracellular proteins gives information about the func-
tions of microbes in the rhizosphere, while past microbial events can be detected by 
the characterization of extracellular stabilized protein.

The proteins that are responsible for different metabolic functions like energy 
production and carbohydrate metabolism, amino acid and lipid biosynthesis, 
membrane transport, and signal transduction are mostly found in the forest soils and 
rhizosphere (Lin et al. 2013). Particularly, different bacterial proteome analyses are 
carried by two-dimensional difference gel electrophoresis (DIGE), mass spectrom-
etry (MS), and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for 
measuring the expression of genes that are involved in plant pathogen detection, 
identification of endosymbiotic interactions, and determination of nitrogen-fixing 
bacteria in leguminous plants.

11.3.3	 �Recent Molecular Techniques to Study PGPRs

Now, it is inferred that the improvement of previous approaches and development 
of new techniques like metabolomics, metagenomics, metatranscriptomics, and 
metaproteomics are more precise assessment of behavior and composition of 
PGPRs as compared to old molecular techniques (Table 11.2). These advancements 
raise questions regarding the function and role of microbial communities (Hirsch 
et al. 2010).

11.3.3.1	 �Metabolomics
The study of total metabolite content that is found in the sample obtained from a 
specific region is called metabolomics. It is not limited only to metabolic profiling; 
it also includes the study about the identification of metabolites to completely 
understand the metabolites produced by PGPRs and their quantification to detect its 
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abundance. The difference among metabolites can also be determined by metabolo-
mics. In root exudates, many metabolites are present that can be identified by this 
analysis. Many PGPRs are present near the plant roots which help plants in per-
forming better functions. This technique helps in determining the functions of the 
rhizospheric microbiome.

Many compounds, secreted by the plants and PGPRs in the rhizosphere, can be 
detected and identified by the metabolic engineering in plants. It also gives the 
chance to critically analyze the function of each individual compound in plants and 
rhizosphere (Dam and Bouwmeester 2016). The great diversity of the metabolites in 
various species can more complicate the metabolomic analysis, especially in plants 
that produce approximately 100,000–200,000 metabolites (Oksman-Caldentey and 
Inze 2004).

It is technical to choose either comprehensive global metabolic profiling or tar-
geted metabolite analyses to analyze primary and secondary metabolism simultane-
ously. A minimum number of amino acids, carbohydrates, vitamins, organic acids, 
lipids, and other compounds like alkaloids, terpenoids, glucosinolates, and phenyl-
propanoids along with the secondary metabolites should be included in a compre-
hensive metabolic profile that may vary according to the plant and rhizobacteria 
being studied. Therefore, it is concluded that interactions between the plants and 
hosts are not only the point of interest in metabolomics studies, but also the great 
diversity of chemical classes makes it more confusing. Moreover, different tech-
nologies are required to make a comprehensive report of changes in each metabolite 
level according to the plant and microbe interaction.

Nowadays, most of the plant microbiologists are considering metabolomics with 
transcriptomics and genomics approaches to study the plant pathology. To study the 
rhizospheric bacteria, metabolomics is a post-genomic technique. Different tech-
niques like nuclear magnetic resonance (NMR), chromatography, mass spectrome-
try (MS), and spectroscopy are used to identify, estimate, and report the abundance 
of metabolites at the specific time. The RNA-based or enzyme-based approaches 
are not enough to investigate the effects of metabolites in the system.

A comprehensive biochemical status report is generated by metabolomics that is 
free from abovementioned pitfalls. Various processes along with bioinformatics and 
data visualization methods are used to develop a metabolic profile and to identify 
the roles of metabolites in the rhizosphere. To obtain a complete record of the 
metabolites present in an organism is known as metabolic profiling. All metabolites 
in a sample can be detected by fingerprinting regardless of their identification. The 
techniques like spectroscopy, electro-spray ionization mass spectrometry (ESI-MS), 
and NMR are used to screen differential metabolites. So, prior to going for expen-
sive metabolic profiling, it provides a very cheap initial approach (Verma et  al. 
2018a). The MS approaches coupled with liquid chromatography help in identifica-
tion of metabolite from an extract. The metabolites from a sample have been 
detected before the identification and selection of the sample and control via MS 
profiling along with computer-assisted inductive approaches (Goodacre et al. 2004).
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11.3.3.2	 �Metagenomics
The study of the complete genomic DNA of a cell in a specific location is called 
metagenomics. The different ecological functions of all species of PGPRs are 
needed to be understood before evaluating the distribution, activity, and richness of 
PGPRs in the rhizosphere and bulk soils. It is revealed by the meta-genome study of 
soil by the (internal transcribed spacer 1) ITS1 region and 16S-rRNA genes through 
second-generation sequencing or next-generation sequencing that 1 g of soil has 
33,346 bacterial and archaeal operational taxonomic units (OTUs) (Mendes et al. 
2011) and 3320 fungal OTUs (Schmidt et al. 2013). The rhizosphere and bulk soils 
can be examined by both Illumina and Roche 454 platforms.

The actinobacteria, acidobacteria proteobacteria, and bacteroidetes are major 
taxa that are found in the oak rhizosphere and bulk soil while studying bacterial 
diversity by Roche 454 pyrosequencing platform (Uroz et  al. 2010). By the 
characterization of composition of the bacterial populations in the micro-sites of 
Lolium perenne, it is identified that actinobacteria, acidobacteria, and proteobacteria 
are present there in abundance (Lagos et al. 2014). Similarly, in the study of bacterial 
diversity in an  apple rhizosphere by Illumina sequencer, it was  found that 
actinobacteria, proteobacteria, gemmatimonadetes, acidobacteria, and bacteroidetes 
were present (Sun et al. 2014).

11.3.3.3	 �Metatranscriptomics
The characterization of the complete mRNA of all cells present in an organism is 
called metatranscriptomics that provides information about metabolic processes of 
the microbial communities. The novel genes and their functions in rhizosphere and 
bulk soil can be identified by the metatranscriptomics analysis, and it can also 
correlate the metabolic activities of these novel genes. But metatranscriptomic 
approaches cannot be used widely in the rhizospheric soils because mRNA is very 
unstable and is very difficult to extract from the complex ecosystems. Some other 
important methodological challenges are short half-life of the mRNA molecule and 
its difficulty to separate it from other RNA molecules like rRNA, miRNA, and 
tRNA and interference of humic acids. Furthermore, the majority of experiments of 
rhizosphere and bulk soils are focused only on bacteria which means there is a need 
for further studies to gather more information about molecular ecology of other 
microbes which are present in microbiome of the rhizosphere like archaea, 
microalgae, protozoa, and fungi (Lagos et al. 2015).

In 2007, a project known as genomic encyclopedia of bacteria and archaea 
(GEBA project) was initiated to characterize the bacterial phylogeny and to better 
understand the microbial genomes. This project is initiated by the collaboration of 
the German Collection of Microorganisms and Cell Cultures, US Department of 
Energy (USDOE), Institute of California Davis USA, and Joint Genome Institute. 
The sequencing of 200 bacterial genomes has been done up till now. Some other 
projects associated with GEBA project are GEBA-RNB (root-nodulating bacteria), 
GEBA-MDM (microbial dark matter), and GEBA-type strain. The identification of 
the unique functions of protein families is the main purpose of GEBA-type strain 
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project, while GEBA-RNB project is based on the symbiotic bacterial sequenced 
strains (100 strains), which  provides information about the interaction between 
roots and bacteria, nitrogen fixation, and endosymbiotic relationships.

On the other hand, the objective of GEBA-MDM project is to find the novel 
bacteria and archaea that are not found in GEBA project already, by using single-
cell genomic approach. The evolutionary studies of bacterial and archaeal genomes 
and phylogenetic analysis of these strains are improved by this project (Rinke et al. 
2013). A third-generation sequencing tool is Pacific biosciences single-molecule 
real-time (PacBio-SMRT) sequencer (Niedringhaus et al. 2011). It can sequence the 
strain Mg1 which belongs to Streptomyces species that has the ability of degrading 
another bacteria, Bacillus subtilis (Hoefler et al. 2013). It is also a good tool for the 
analysis of long sequencing reads of 16S-rRNA obtained from the environmental 
samples.

11.3.3.4	 �Metaproteomics
It provides information about the soil microbes and their roles like bioremediation 
or degradation processes and biogeochemical processes (Bastida et al. 2012). The 
proteogenomics is a significant tool to study the ecology, evolution, and physiology 
of PGPRs, their populations, and consortia in many environments to link particular 
PGPR species with its specific function (VerBerkmoes et al. 2009). This approach 
is significant due to its property of combining metagenomics and metaproteomics to 
provide authentication of results generated by metagenomics studies with the help 
of protein data. Hence, it is elementary to understand that the databases made to 
identify soil protein interactions are still incomplete. Nonetheless, many 
metaproteomics experiments have discovered the diversity of proteins which are 
expressed due to the plant-microbe interaction. The results obtained from this 
experiment showed that ratoon sugarcane made important changes in the soil such 
as catabolic diversity, enzyme activities, and level of expression of soil proteins 
generated from the microbes and plants. This experiment also revealed the fact that 
24.77% of proteins which are present in soil are obtained from bacteria, and the 
majority of the microbial proteins with upregulated expression are involved in 
signal transduction and membrane transport (Lin et al. 2013).

A same type of experiment is performed on the herb Rehmannia glutinosa, 
showing that the identified proteins of plants and microbes are responsible for 
amino acid metabolism, response to stress, and energy metabolism (Wu et  al. 
2011). But, as compared to the previous study, it shows less percentage of proteins 
that are generated by bacteria for signal transduction. Furthermore, in the rhizo-
spheric soil of Lactuca sativa, high amounts of proteins are present that are respon-
sible for energy metabolism, response to stress, and virulence determination 
(Moretti et al. 2012).
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11.4	 �Conclusions

The plant growth-promoting rhizobacteria (PGPRs) are the biological entities to 
boost up the soil properties which directly or indirectly help to enhance plant growth 
and development. There are lots of conventional methods to study PGPRs, but the 
modern procedures are getting more and more popularity due to various reasons. 
The modern molecular and biotechnological methods are more robust, accurate, and 
sensitive. They include simple PCR to qPCR, sequencing to next-generation 
sequencing, and genomics to metagenomics. This chapter reviewed the most 
advanced procedures to study PGPRs with more efficiency in limited time.
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Abstract
Changes in land use affect microbial biomass carbon (MBC), nitrogen (MBN), 
and phosphorus (MBP), and microbial populations, important parameters to sus-
tain ecological systems. MBC, MBN, MBP, and microbial populations vary 
markedly among land uses and with conversion of one land use to another. A 
literature survey suggests that forest lands have favourable influence on MBC, 
MBN, MBP, and microbial populations, followed by agroforestry, silvipasture, 
and agriculture, respectively. Microbial quotients also vary with land use and 
have strong positive correlations with MBC, MBN, and MBP. It is well estab-
lished that population pressure is causing the conversion of forest lands to non-
forest purposes. This conversion of forest land to agriculture and other uses 
affects the quantity of MBC, MBN, MBP, and microbial populations. The ratio 
of MBC to soil organic carbon (SOC), MBN to total N, and MBP to total P varies 
significantly. The soil microbial biomass (SMB) is lively and active in regulating 
the transformation of soil organic matter (SOM). These activities are vital for the 
cycling of nutrients in the soil. In general, the increased level of microbial bio-
mass in the soil is beneficial and a decreased level is seen as harmful, provided it 
should improve or decrease the functional biology of the soil. Interpretation of 
soil microbial biomass parameters is very difficult. Here, we have tried to explain 
the importance of microbial biomass, its role and measurement, including exam-
ples from Indian Himalaya.

Keywords
Agroforestry · Grasslands · Himalaya · Land uses · Microbial biomass · 
Silvipastoral

12.1	 �Introduction

The microbial biomass is an important component of the soil ecosystem, a major 
reservoir of terrestrial carbon (C) (Heimann and Reichstein 2008), and through 
decomposition of organic matter is involved in climate change (Davidson and 
Janssens 2006). The flora, fauna, soil microorganisms, and climate have complex 
interactions that regulate climate change (Bardgett et al. 2008). Microbial biomass 
carbon (MBC) responds faster to climate change than does the bulk organic matter 
of the soil. Microbial biomass along elevation gradients with different land uses has 
not been analyzed and is inadequately understood. Soil microbial biomass C, nitro-
gen (N), phosphorus (P), and microbial population dynamics along an elevation 
gradient are also paramount in soil fertility and quality (Mganga et al. 2016). As per 
the findings of Margesin et al. (2009), an increasing trend was reported for a gram-
negative bacterial population along an elevation gradient. A higher diversity of effi-
cient microorganisms was observed at higher elevations in South Korea (Singh et al. 
2014). Microbial biomass C and N increase linearly along the elevation gradient 
(Pabst et al. 2013; Huang et al. 2014; Lin and Chiu 2015).
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Measuring microbial biomass (MB) to quantify microorganisms as a whole unit 
in the soil (Jenkinson and Ladd 1981; Powlson 1994; Stockdale and Brookes 2006) 
became necessary because it is very difficult to study the microbial soil population 
components that cannot be cultured (Gonzalez-Quinones et al. 2011). According to 
Jenkinson and Ladd (1981), the microbial biomass in the soil is a live constituent of 
the soil organic matter (SOM), which excludes plant roots and soil animals larger 
than 5000 μm3. Sustainable land use development is only possible by knowing how 
different land uses affect the biological functions of the soil. Hence, it is paramount 
to interpret soil quality in the form of biological indices from the quantity of micro-
bial biomass in the soil. The present article aims to evaluate different land uses, that 
is, agriculture, agroforestry, silvipastoral, grassland, and forests, for microbial bio-
mass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phos-
phorus (MBP), and the microbial population (Yadav et al. 2018).

12.1.1	 �Soil Microbial Biomass and Soil Quality

Soil qualities of different land uses are determined by microbial biomass, enzymatic 
activities, and the structure and functions of the microbes (Vallejo et al. 2010). Soil 
nutrients and microbial biomass are strongly influenced by the types of land use and 
their management, especially in the tropics. Conversion of land use from forest to 
agriculture significantly reduces the quantity of nutrients and microbial biomass C, 
N, P, and microbial populations in the soil (Sharma et al. 2004; Becker et al. 2007; 
Pabst et al. 2013). On an average, C stock decreased approximately 25% to 30% 
through conversion of forest to agro-ecosystems (Don et al. 2011). Changes in the 
basic soil properties, that is, content and distribution, also include microbial changes 
in the soil. Conversion of grassland to an agricultural ecosystem has led to a decrease 
of approximately 16% microbial biomass in the soil of northeast India (Singh and 
Yadava 2006). In comparison to organic matter, microbial biomass in the soil is 
more responsive to land uses (Kumar et al. 2017).

These efficient microorganisms have a vital function in the biogeochemical 
cycles of terrestrial ecosystems (Paul and Clark 1996) and biomass returns in differ-
ent ecosystems (Solaiman 2007). Microbial biomass, the bacteria and fungi in the 
soil, is a indicator of the living fraction of SOM, at 1% to 5% (Jenkinson and Ladd 
1981; Anderson and Domsch 1989), and is considered as a labile pool for available 
soil nutrients to plants (Sun et al. 2010). Soil organic matter and microbial biomass 
are together responsible for the maintenance of soil quality. Thus, it is very impor-
tant to examine the effect of land use and elevation gradient on microbial biomass 
C, N, and P and microbial populations in the soil (Rawat et al. 2016).

A soil quality indicator should meet the following five criteria (Doran and 
Zeiss 2000):

	1.	 Sensitivity to management variation
	2.	 Good correlations with soil functions
	3.	 Useful to clarify ecosystem processes
	4.	 Can be understood and used by land managers
	5.	 Easy and economical to measure
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12.1.2	 �Soil Microbial Biomass (SMB) Supports Plant Output 
(Gonzalez-Quinones et al. 2011)

•	 Supports and anchors plant growth via stabilization of soil aggregates through 
the fungal network and bacterial exudates

•	 Suppresses crop disease through infection of roots by mycorrhizal fungi
•	 Provides and buffers physicochemical environment for plant growth by decom-

position of organic materials and humus formation
•	 Controls water availability for plant growth in the form of plant–mycorrhizal 

associations
•	 Controls nutrient availability for plant growth through mineralization, N-fixation, 

and phosphorus-, potassium-, and Zn-solubilization

12.1.3	 �Resiliency to Adverse Environment (Gonzalez-Quinones 
et al. 2011)

•	 Aids resiliency to ecological alterations and management effects via horizontal 
gene transfer

•	 Buffers flows of water and decreases off-site effects through hydrophobic com-
pound synthesis and biofilm formation

•	 Acts as buffers to nutrient losses and shrinking off-site effects via nitrification
•	 For pollution impacts, acts as buffers through pesticides and other xenobiotic 

degradation
•	 For greenhouse gases, may act as source/sink via denitrification and oxidation of 

methane
•	 Aids in self-maintenance of aboveground and belowground ecosystems through 

cycling of carbon and immobilization

Globally, it has been recommended that the microbial biomass of the soil should 
be used as an indicator of soil quality (Insam 2001; Schloter et al. 2003; Bending 
et al. 2004; Winding et al. 2005). It is being proposed that the microbial biomass of 
the soil could act as a C-cycling indicator but not as indicating plant productivity 
(Carter et al. 1999). Microbial biomass measurement and interpretation approach in 
the soil are not universal in consideration of the objectives, land uses, environment, 
and management practices (Yadav and Sidhu 2016).

12.2	 �Measuring Soil Microbial Biomass

12.2.1	 �Soil Sampling

There is large heterogeneity in microbial distribution and abundance in the soil of 
various farms, even sometimes in the same field. More samples from the same field 
are collected to increase the homogeneity of the soil samples and can be analyzed 
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either separately or as a composite sample by mixing well. It is being recommended 
that for heterogeneous sites the number of replicates should be increased on a per 
hectare basis to maintain homogeneity. When a large area should be sampled, then 
the increasing number of samples adds to the cost of sample analysis (Patil 2002). 
In such a situation a composite sample can be made by pooling some soil samples, 
but not a large number of multiple samples.

12.2.2	 �When to Take Soil Samples

It is well known that the microbial biomass of the soil, in both number and activity, 
varies not only with different seasons but also within seasons (Devi et  al. 
2014; Bhuyan et al. 2013). Variability in the microbial biomass of the soil is associ-
ated with fluctuation in soil moisture content from moist and dry spells (Ladd et al. 
1994; Murphy et  al. 1998b), available labile C input at the time of active plant 
growth (Murphy et al. 2007; Gonzalez-Quinones et al. 2009), and changes in man-
agement practices (Sharma et al. 2004). Frequency of sampling should be increased 
(Murphy et al. 2007), or a homogeneous period of weather conditions and manage-
ment practices should be identified for the collection of soil samples. The period 
after the withdrawal of the monsoons and up to March–April is suitable for stable 
moisture content and weather aspects more than at any other period of the year.

12.2.3	 �Whether Soil Samples Can Be Stored

Soil microbial biomass is likely to decline during storage of samples because of 
organic carbon (OC) substrate depletion (Bloem et  al. 2005), which is a greater 
problem for stored wet soil compared to dry soil. It is a general recommendation 
that storage of soil samples be avoided, but when it is necessary, samples can be 
stored at 2–4 °C in the dark up to 3 months; samples from freezing (3 months) areas 
can be stored for a period of 6 months at 18 to −22 °C (Wollum 1994; OECD 1995). 
Soil microbial biomass from different land uses is affected variably by storage of 
soil at field moisture. The soil sampling strategy should be planned in advance to 
reduce the time that samples are stored before analysis.

12.2.4	 �Soil Microbial Biomass Estimation

Several methods are available for analysis of microbial biomass in the soil. MBC 
can be analyzed by the fumigation–extraction method (Vance et  al. 1987). For 
microbial biomass C and N analyses, two subsamples of 10 g of each field moist soil 
sample are weighed into a 250 ml beaker. The second subsample is fumigated with 
30 ml ethanol-free chloroform for 24 h in vacuum desiccators at room temperature. 
Soluble C from fumigated and nonfumigated samples is extracted with 25 ml 0.5 M 
K2SO4 by shaking on an orbital shaker for 1 h. Without chloroform fumigation, C 
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content in K2SO4 extracts from each soil sample is accepted as WOC (Blagodatskaya 
et  al. 2009). After determining solute organic C in fumigated and nonfumigated 
extracts, a kEC factor of 0.45 is used to convert microbial C flush (difference between 
extractable C from fumigated and nonfumigated samples) into MBC (Vance et al. 
1987).

For microbial biomass N analysis, the fumigated and nonfumigated samples are 
digested (Anderson and Ingram 1993); nitrogen is analyzed by the modified Kjeldahl 
method. Microbial biomass N is calculated from the equation of MBN = EN × 1.46, 
where EN is the difference between the amount of extractable N from the fumigated 
and nonfumigated soils (Brookes et al. 1985). The extracted P is determined by the 
chlorostannous-reduced molybdophosphoric blue color method (Jackson 1967). 
The correction for chloroform-released P that is absorbed by the soil during extrac-
tion is made by adding a known quantity of P during extraction and then correcting 
for its recovery. Microbial biomass P was calculated by the formula EP × 2.5, where 
EP is the difference between the amount of extractable P from the fumigated and 
nonfumigated soils (Brookes et al. 1982).

For microbial analysis, samples are sealed in containers and the microbial popu-
lation is estimated within 24 h of sampling. The samples are serially diluted with 
distilled water up to 106 dilutions, and a 100-μl aliquot is pour-plated in selective 
media (Nutrient Agar for bacteria; Rose Bengal Agar for fungi; Ken Knights and 
Munaier’s Agar for actinomycetes). The petri plates are incubated at optimum tem-
perature (28 ± 1 °C for bacteria; 30 ± 1 °C for fungi and actinomycetes) in triplicate, 
and the appearing microbial colonies were counted (3 days for bacteria; 5 days for 
fungi; 7 days for actinomycetes) after incubation and expressed as total culturable 
colony-forming units (CFUs)/g dry weight of soil sample. For actinomycetes, strep-
tomycin and cycloheximide are also added to inhibit the growth of bacteria and 
fungi at the final concentration (Yang and Yang 2001).

12.3	 �Role of Landowners and Government

The policy of the government influences decisions of the stakeholders (landowners) 
related to soil quality apprehension. Educational institutes can take a vital role in 
understanding the functioning of microbial biomass as just now the government of 
India has launched the soil health card scheme. There should be coordination 
between land owners and soil scientists; the scientist should be able to understand 
the concerns of landowners related to outcomes of their farm. Closer links to 
management practices are needed if SMB measurements are to be of clear and prac-
tical use to farmers (Kelly et  al. 2009) and support improved soil management 
(Sojka et al. 2003).
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12.4	 �Microbial Indices

Dalal (1998) and Anderson (2003) have recommended that the application of easy 
indices (ratios of biochemical attributes) may offer easily interpretable indicators to 
prevail in interpreting great difference in microbial biomass values of the soil. The 
important microbial indices that are frequently used besides MB measurements in 
soil are these (Gonzalez-Quinones et  al. 2011): (1) the rate of microbial carbon 
dioxide (CO2) evolution per amount of SMB-C (qCO2), termed the metabolic quo-
tient; and (2) the amount of SMB-C per unit soil organic C (Cmic:Corg ratio), termed 
the microbial quotient.

12.5	 �Soil Microbial Biomass

The SMB is an important source for soil carbon and nutrients, which potentially 
influence the retention of organic C and N within the SOM. Therefore, it is essential 
to understand the mechanism of microbial abundance, turnover, and carbon and 
nutrient sequestration (Xu et al. 2013). The microbial biomass is to be measured as 
a driving factor of soil organic materials and a labile pool for plant nutrients 
(Jenkinson and Ladd 1981). Hence, diminution of the soil microbial biomass could 
lead to decreased rates of nutrient cycling and decreased magnitude of the nutrient 
pool. The microbial community of soils is influenced by a wide variety of factors 
such as physical, chemical, and biological, which include soil type and texture 
(Buyer et  al. 2002; Ulrich and Becker 2006), aggregate size (Schutter and Dick 
2002), moisture (Williams and Rice 2007), pH (Fierer and Jackson 2006), tempera-
ture (Yang et al. 2010), and soil depth (Haripal and Sahoo 2014). The SMB also 
depends on various agricultural management factors such as tillage operation 
(Cookson et al. 2008), fertilizer (Grayston et al. 2004), organic amendments (Saison 
et al. 2006), crop rotation, and land use system (Xu et al. 2013). The microbial com-
munity is also influenced by season, climatic factors, and type of vegetation (Haripal 
and Sahoo 2014). However, the relationship between soil elements and soil micro-
bial biomass and nutrient concentrations, especially at the natural habitat level, is 
not well understood (Cleveland and Liptzin 2007; Hartman 20112011). The con-
centrations of major plant nutrients C, N, and P in soils and soil microbial biomass 
vary by orders of magnitude in different habitats (Figs. 12.1 and 12.2).

12.5.1	 �Microbial Biomass C

In the literature survey we found that soil MBC varied significantly with respect to 
different soil types and soil depths. The average amount of MBC at 0–10 cm depth 
ranged from ~105 to 513 μg g−1 soil and ~81–364 μg g−1 soil in the 10–20 cm soil 
layer (Haripal and Sahoo 2014). Soil MBC also varied seasonally in one research 
study: it was observed that during the months of August–October, MBC was maxi-
mum at ~240 μg g−1 but was drastically reduced during December to January, 85 μg 
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g−1 in the study area, Sambalpur district of Odisha, India (Haripal and Sahoo 2014). 
MBC ranged from ~219 to 864 μg g−1 for different agroforestry, cropped, and waste-
land areas in Sikkim Himalaya (Sharma et al. 2004), ~215–297 μg/g at 0–10 cm 
depth, 62–78 μg/g at 10–20 cm depth, and 29.6–35.3 μg/g at 20–30 cm depth for 
grasslands and croplands in eastern Himalaya (Singh and Yadava 2006), 213–238 μg 
g−1 at 0–15 cm depth and 199–215 μg g−1 at 15–30 cm depth for various crop-based 
agro-ecosystems in eastern Himalaya (Bhuyan et  al. 2013), 457–1000  μg g−1 at 
0–20 cm depth and 307–692 μg g−1 at 21–40 cm depth for different fruit tree orchards 

Fig. 12.1  Variation of soil organic carbon, total nitrogen, and phosphorus content in different 
habitats. (From Xu et al. 2013)

Fig. 12.2  Variation of soil microbial biomass carbon, nitrogen, and phosphorus content in differ-
ent habitat. (From Xu et al. 2013)
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and control (without fruit trees) in Northwestern Himalaya (Debnath et al. 2015), 
265–576 μg g−1 at 0–15 cm depth, 225–535 μg g−1 at 15–30 cm depth, 278–501 μg 
g−1 at 30–45 cm depth, and 198–497 μg g−1 at 45–60 cm depth for different land uses 
(Pal et  al. 2013), and 318–520 μg g−1 at 0–30 cm depth for various land uses in 
Central Himalaya (Yadav et al. 2018). MBC of cultivated soil also varies with long-
term fertility management: MBC in rice fields in different years starting from the 
2nd, 4th, 6th, and 11th to 15th year were 104.5, 155.3, 274.2, 398.9, and 515.8 μg 
g−1, respectively (Haripal and Sahoo 2014). These data suggests that MBC changes 
with type of land use and also with depth, generally decreasing with increasing soil 
depth. MBC was the maximum in temperate natural forest and declined to a mini-
mum in the wasteland subtropical in Sikkim Himalaya (Tables 12.1 and 12.4).

12.5.2	 �Microbial Biomass N

As for MBC, MBN is also strongly influenced by the type of habitat. For example, 
in one study in different habitats, from forest to grasslands, desert, croplands, and 
pasture land, MBN varied significantly, the value ranging from ~35 to 2.3 mmol 
N kg−1 (Xu et al. 2013). Long-term management could also affect MBN content 
in the soil system. In a study conducted in a rice field, taking samples from 5 dif-
ferent years, starting from 2nd to 4th, 6th, 11th, and 15th year duration, it was 
observed that the MBN value (Fig. 12.3) was significantly increased with increas-
ing duration (Haripal and Sahoo 2014). The data showed that the MBN varied 
from ~30 to 142 μg g−1 at 0–15 cm depth for different agroforestry, cropped, and 
wasteland areas in Sikkim Himalaya (Sharma et al. 2004), ~32 to 38.6 μg g−1 at 
0–10 cm depth, 11–13.3 μg g−1 at 10–20 cm depth, and 4.3–5 μg g−1 at 20–30 cm 
depth for grasslands and croplands in eastern Himalaya (Singh and Yadava 2006), 
19.9–21.5 μg g−1 at 0–15 cm depth and 15.4–19.2 μg g−1 at 15–30 cm depth for 
various crop-based agro-ecosystems in eastern Himalaya (Bhuyan et  al. 2013), 
47.2–82.3 μg g−1 at 0–10 cm depth for two different oak forest stands in eastern 
Himalaya (Devi and Yadava 2006), 180–320 μg g−1 at 0–20 cm depth and 101–
156 μg g−1 at 21–40 cm depth for different fruit tree orchards and control (without 
fruit trees) in Northwestern Himalaya (Debnath et al. 2015), 20.9–31.2 μg g−1 at 
0–15 cm depth, 16.9–28.9 μg g−1 at 15–30 cm depth, 14.5–23.7 μg g−1 at 30–45 cm 
depth, 8.9–25.5 μg g−1 at 45–60 cm depth for different land uses (Pal et al. 2013), 
and 42.4–66.7 μg g−1 at 0–30 cm depth for various land uses in Central Himalaya 
(Yadav et al. 2018).

12.5.3	 �Microbial Biomass P

As per the findings of various studies, across different land uses MBP ranged from 
~12 to 43 μg g−1 at 0–15 cm depth for different agroforestry, cropped, and waste-
land areas in Sikkim Himalaya (Sharma et al. 2004), ~16 to 18 μg g−1 at 0–10 cm 
depth, 46–5.6 μg g−1 at 10–20 cm depth, and 2.33 μg g−1 at 20–30 cm depth for 

12  Impact of Land Uses on Microbial Biomass C, N, and P and Microbial Populations…



www.manaraa.com

242

Fig. 12.3  Microbial biomass C, N, and P content in different age series of rice fields in Sambalpur 
district of Odisha, India. (From Kamala Haripal and Sunada Sahoo 2014)

grasslands and cropland in eastern Himalaya (Singh and Yadava 2006), 9.2–13.5 μg 
g−1 at 0–15 cm depth and 7.2–9.6 μg g−1 at 15–30 cm depth for various crop-based 
agro-ecosystems in eastern Himalaya (Bhuyan et  al. 2013), 28.2–37.3 μg g−1 at 
0–10 cm depth for two different oak forest stands in eastern Himalaya (Devi and 
Yadava 2006), 48–92 μg g−1 at 0–20 cm depth and 37–67 μg g−1 at 21–40 cm depth 
for different fruit tree orchards and control (without fruit trees) in Northwestern 
Himalaya (Debnath et al. 2015), 2.6–6.5 μg g−1 at 0–15 cm depth, 2.5–4.1 μg g−1 at 
15–30 cm depth, 2.4–4.2 μg g−1 at 30–45 cm depth, 2.2–4.0 μg g−1 at 45–60 cm 
depth for different land uses (Pal et al. 2013), and 42.4–66.7 μg g−1 at 0–30 cm 
depth for various land uses in Central Himalaya (Yadav et al. 2018) (Tables 12.1, 
12.2, 12.3, and 12.4).

12.5.4	 �Microbial Quotients

Across land uses, MBC:MBN was recorded in the range of 6–11 at 0–15 cm depth 
for different agroforestry, cropped, and wasteland areas in Sikkim Himalaya 
(Sharma et  al. 2004), 6.8–6.9 at 0–10  cm depth for grasslands and croplands in 
eastern Himalaya (Singh and Yadava 2006), 8.8–11.9 at 0–15 cm depth and 10–13.9 
at 15–30  cm depth for various crop-based agro-ecosystems in eastern Himalaya 
(Bhuyan et al. 2013), 10.1–11.3 at 0–10 cm depth for two different oak forest stands 
in eastern Himalaya (Devi and Yadava 2006), 2.6–4.6 μg g−1 at 0–20 cm depth and 
3.2–5.2 at 21–40 cm depth for different fruit tree orchards and control (without fruit 
trees) in Northwestern Himalaya (Debnath et al. 2015), and 8.4–10.6 at 0–30 cm 
depth for various land uses in Central Himalaya (Yadav et al. 2018) (Tables 12.1, 
12.2, 12.3, and 12.4). Microbial quotient also varied by duration of year in the same 
rice crop, and the values of MBC:MBN of different year series varied from 11.7 to 
5.3 at the surface soil (Haripal and Sahoo 2014).
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Table 12.3  Microbial C, N and P in soil of different land-use/cover types at varying depths (cm) 
in Northwestern Himalaya

Land use/
cover

MBC 
(μg  
g−1)

MBN 
(μg 
g−1)

MBP 
(μg 
g−1) MBC:MBN MBC:MBP MBN:MBP References

0–20 cm soil layer
Control 457 180 48 2.61 9.94 3.9 Debnath 

et al. 
(2015)

Apricot 
orchard

852 242 63 3.55 13.78 3.86

Plum 
orchard

1000 320 51 3.27 20.8 6.42

Peach 
orchard

928 278 92 3.46 10.24 3.12

Cherry 
orchard

825 181 56 4.64 15.23 3.27

21–40 cm soil layer
Control 307 101 37 3.24 8.42 2.81 Debnath 

et al. 
(2015)

Apricot 
orchard

592 138 47 4.5 15.67 3.27

Plum 
orchard

692 156 42 4.53 19.26 4.55

Peach 
orchard

684 142 67 5.12 10.63 2.14

Cherry 
orchard

513 104 46 5.22 11.23 2.34

0–15 cm soil layer
Forest 576 31.24 6.55 – – – Pal et al. 

(2013)Grassland 487 28.76 5.24 – – –
Horticulture 435 30.01 4.87 – – –
Agriculture 324 24.34 3.21 – – –
Wasteland 265 20.98 2.65 – – –
15–30 cm soil layer
Forest 535 28.97 4.08 – – – Pal et al. 

(2013)Grassland 401 23.34 4.00 – – –
Horticulture 398 18.96 3.79 – – –
Agriculture 301 19.78 3.02 – – –
Wasteland 225 16.99 2.54 – – –
30–45 cm soil layer
Forest 501 23.76 4.27 – – – Pal et al. 

(2013)Grassland 376 21.56 3.01 – – –
Horticulture 302 18.65 2.98 – – –
Agriculture 301 14.56 2.87 – – –
Wasteland 278 15.34 2.41 – – –
45–60 cm soil layer
Forest 497 25.54 4.01 – – – Pal et al. 

(2013)Grassland 324 19.01 2.99 – – –
Horticulture 298 15.45 3.21 – – –
Agriculture 225 10.05 2.21 – – –
Wasteland 198 8.98 2.21 – – –

Source: Debnath et al. (2015) and Pal et al. (2013)
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As shown in Tables 12.1, 12.2, 12.3, and 12.4, MBC:MBP ranged from 18 to 27 
at 0–15 cm depth for different agroforestry, cropped, and wasteland areas in Sikkim 
Himalaya (Sharma et al. 2004), 14–15 at 0–10 cm depth for grasslands and crop-
lands in eastern Himalaya (Singh and Yadava 2006), ~17 to 26 at 0–15 cm depth, 
and ~21 to 30 at 15–30 cm depth for various crop-based agro-ecosystems in eastern 
Himalaya (Bhuyan et al. 2013), ~19 to 22 at 0–10 cm depth for two different oak 
forest stands in eastern Himalaya (Devi and Yadava 2006), and 10–21 at 0–20 cm 
depth and ~8 to 19 at 21–40 cm depth for different fruit tree orchards and control 
(without fruit trees) in Northwestern Himalaya (Debnath et  al. 2015). 
MBC:MBN:MBP ranged from 18:2:1 to 27:3:1 at 0–15 cm depth for different agro-
forestry, cropped, and wasteland areas in Sikkim Himalaya (Sharma et al. 2004).

The range of microbial C to OC% in various land uses was 1.5 to 3.3 at 0–15 cm 
depth for different agroforestry, cropped, and wasteland areas in Sikkim Himalaya 
(Sharma et al. 2004), 2–2.1 at 0–10 cm depth for grasslands and croplands in eastern 
Himalaya (Singh and Yadava 2006), 1.1–3.3 at 0–15  cm depth and 1.1–3.3 at 
15–30  cm depth for various crop-based agro-ecosystems in eastern Himalaya 
(Bhuyan et al. 2013), 1.4–2.2 at 0–10 cm depth for two different oak forest stands 
in eastern Himalaya (Devi and Yadava 2006), and from 1.9 to 3.37 at 0–30 cm depth 
for various land uses in Central Himalaya (Yadav et al. 2018). The decline of micro-
bial biomass in lower layers is attributed to the lesser availability of SOC (Tables 
12.1, 12.2, 12.3, and 12.4).

Tables 12.1 through 12.4 show the range of recorded microbial N to total N% to 
be 1.7–4.9 μg g−1 at 0–15 cm depth for different agroforestry, cropped, and waste-
land areas in Sikkim Himalaya (Sharma et al. 2004), 2.44–2.46 at 0–10 cm depth for 
grasslands and croplands in eastern Himalaya (Singh and Yadava 2006), 0.46–1.23 
at 0–15 cm depth, and 0.35–0.90 at 15–30 cm depth for various crop-based agro-
ecosystems in eastern Himalaya (Bhuyan et al. 2013), and 1.1–1.7 at 0–10 cm depth 
for two different oak forest stands in eastern Himalaya (Devi and Yadava 2006).

Among various land uses, microbial P to organic P% ranged from 3.1 to 7.8 at 
0–15 cm depth for different agroforestry, cropped, and wasteland areas in Sikkim 
Himalaya (Sharma et al. 2004), from 9.5 to 10.1 at 0–10 cm depth for grassland and 
cropland in eastern Himalaya (Singh and Yadava 2006), from 2.6 to 4.8 at 0–15 cm 
depth and from 1.62 to 5.32 at 15–30  cm depth for various crop-based agro-
ecosystems in eastern Himalaya, respectively (Bhuyan et al. 2013), and from 5.5 to 
5.9 at 0–10 cm depth for two different oak forest stands in eastern Himalaya (Devi 
and Yadava 2006) (Tables 12.1, 12.2, 12.3, and 12.4).

12.5.5	 �Seasonal Changes in MBC, MBN, and MBP

According to the findings of a research study by Kamala Haripal and Sunada Sahoo 
in 2014, microbial biomass carbon varies with seasonal changes (Fig. 12.3). MBC 
was maximum during the month of August and minimum in December at three dif-
ferent soil depths. In another study, both MBC and MBN content were high (Yang 
et al. 2010) during the summer season followed by spring and autumn (Fig. 12.4). 
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Across land uses, MBC ranged from 170 to 882, 131 to 671, and 355 to 1039 μg g−1 
at 0–15 cm depth for different agroforestry, cropped, and wasteland areas in Sikkim 
Himalaya (Sharma et al. 2004), from 284 to 326, 216 to 255, and 262 to 310 μg/g at 
0–10 cm depth, from 51 to 60 and 66 to 81 μg/g at 10–20 cm depth, from 35 to 38, 
23 to 32, and 31 to 36 μg g−1 at 20–30 cm depth for grasslands and croplands in 
eastern Himalaya (Singh and Yadava 2006), and from 392 to 738, 740 to 1182, and 
382 to 465 μg g−1 at 0–10 cm depth for two different oak forest stands in eastern 
Himalaya (Devi and Yadava 2006). Maximum MBC was recorded during the winter 
season in soybean, vegetable, and millet by atomic emission spectrometry (AES), 
whereas in the maize agro-ecosystem, it was found during the autumn season. 
Minimum values were recorded during the rainy season in all the sites (Table 12.5). 
In land uses, MBN range was 24–156, 20–74, and 44–194 μg g−1 at 0–15 cm depth, 
respectively, for different agroforestry, cropped, and wasteland areas in Sikkim 
Himalaya (Sharma et al. 2004), 41–48, 26–31, and 29–37 μg g−1 at 0–10 cm depth, 
15–17, 8–10, and 10–13 μg g−1 at 10–20 cm depth, and 6, 3–4, and 4–5 μg g−1 at 
20–30 cm depth for grassland and cropland in eastern Himalaya (Singh and Yadava 
2006), and 38–70, 54–99, and 44–69 μg g−1 at 0–10 cm depth for two different oak 
forest stand in eastern Himalaya (Devi and Yadava 2006).

According to Table 12.5, MBP range was 11–46, 10–29, and 14–54 μg g−1 at 
0–15  cm depth for different agroforestry, cropped, and wasteland areas, respec-
tively, in Sikkim Himalaya (Sharma et al. 2004); 21–21, 12–14, and 15–19 μg g−1 at 
0–10 cm depth, and 7–8, 3–4, and 4–5 μg g−1 at 10–20 cm depth, and 3, 2, and 2 μg 
g−1 at 20–30  cm depth for grasslands and croplands, respectively. in eastern 
Himalaya (Singh and Yadava 2006); and 23–33, 36–44, and 21–31 μg g−1 at 0–10 cm 
depth, respectively, for two different oak forest stands in eastern Himalaya (Devi 
and Yadava 2006), with different land uses.

Fig. 12.4  Seasonal variation of MBC at different soil depth in long-term experiment of 15 years 
in rice field in Sambalpur district of Odisha, India. (From Haripal and Sahoo 2014)
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12.6	 �Conclusions and Future Prospective

The literature suggests that conversion of land from one usage to another may have 
either detrimental or positive effects on microbial biomass and soil organic matter. 
Soil C, N, and P may decrease immediately following such changes, but soil reserves 
may also recover after a relatively short period of time if management practices are 
adopted. Destruction of soil organic matter likely results in a decline in productivity. 
In the Indian Himalayan, microbial biomass is directly related to plant biomass and 
is very sensitive to changes in land use and land cover as it decreases remarkably 
after such alterations. Therefore, afforestation of agricultural land is advisable. 
Furthermore, the loss of organic matter and productivity might be counteracted by 
strengthening agroforestry systems and crop residue management.
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Abstract
The potassium (K) requirement of crops is fulfilled solely from the soil solution 
form. About 98% of the K is fixed in the soil system whereas only 2% is readily 
available to plants. Many of the efficient microbes have a key role in solubilizing 
the unavailable form of K to stimulate crop yield. The lack of good-quality 
K-mineral has hindered the manufacturing of K-fertilizers in India; hence, the 
entire quantity of K-fertilizers is imported. This situation warrants a call for 
alternative means and technology to cater to the growing need of K requirements 
of crops and restore soil fertility. This book chapter will be helpful to display the 
indigenous sources of potassium as a substitute for costly imported K-fertilizers 
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in time of need while discussing the concept of solubilization of native 
K-minerals. In this chapter, the main emphasis is a brief introduction of the sig-
nificant scenario of potassium, past research work carried out in India and abroad, 
and summarizing the role of the latter of significant importance to soil scientists, 
agricultural microbiologists, and students interested in the area of soil microbiol-
ogy who may work on the microbial consortium for solubilization of K to 
enhance crop production.

Keywords
K-solubilizing · Agricultural soils · Crop productivity

13.1	 �Introduction

Proper feeding of our rapidly growing population is a challenge because heavy 
industrialization and urbanization have led to shrinkage of agricultural areas and a 
food production crisis. The intensive cropping system requires a greater amount of 
fertilization. Hence, nutrient deficiency is inevitable unless the levels of soil fertility 
are measured (Bahadur et al. 2015). It is well established that the application of 
fertilizers increases crops yields, but there is a continuous imbalance in fertilization 
that deteriorates soil health and creates groundwater pollution as well as decreasing 
crop production. Among the many nutrients required by plants, potassium is nota-
ble, and has sufficiently large reserves as minerals in certain soils. However, plants 
are dependent on potassium solution uptake, and potassium in its absorbable form 
is greatly limited in the soil environment. The amount of K required by plants is 
much greater than that of any soil-supplied nutrient excluding nitrogen. However, 
plants directly cannot use the mineral K unless it is available in soil solution. Many 
of the bacteria and rhizobacteria have the capacity to solubilize or mineralize the 
fixed form of mineral K into soil solution: these bacteria are called potassium-
solubilizing bacteria (Zeng et  al. 2012). Their importance in agriculture through 
symbiosis with crop plants, and as biological control agents against several plant 
pathogens through different plant growth-promoting (PGP) activities and cycling of 
nutrients, is known. Use of these efficient microbes in agriculture to increase the 
yield of crops without harming the environment as well as maintaining soil quality 
and health is the ultimate goal (Archana et al. 2013).

Soil microbes are important candidates for sustenance of soil health as they per-
form several functions including dissolution of K-minerals (Maurya et al. 2014) and 
several other processes that aid in soil structure improvement, increased plant 
growth, and processes related to the supply of K to plants. Continuous imbalanced 
use of agrochemicals to increase crop yield may result in groundwater pollution and 
deterioration of soil nutrients, thus causing depletion of crop yield (Sheng and He 
2006).
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There is a crucial requirement to turn back to nature with agents such as the use 
of beneficial microbes to promote sustainable agriculture. K+ is a crucial cation that 
is present in plant tissues and fulfills a wide range of physiological and biochemical 
functions in plants (Zhang and Kong 2014). In most cultivated crop plants, the 
quantity of K absorbed by the plants ranks second only after nitrogen (Meena et al. 
2014). When K+ is dissolved into soil solution, it is adsorbed on/in clay and organic 
colloids but can also be part of some more complex chemical compounds (Zandonadi 
et al. 2010). Potassium is involved in enzyme activation, photosynthesis, and pro-
tein synthesis.

The issue of potassium in the soil for sustainable management was partially 
ignored during the past two decades when the focus was on the potential environ-
mental impact of application of phosphorus and nitrogen (Saha et  al. 2016). 
However, in recent years, awareness among farmers regarding the importance of 
potassium in crop production is increasing in several parts of the world. Indian soils 
show K deficiency because available soil K levels have dropped from rapid agricul-
tural development without restoring the soil, and hence K-fertilizers are used again 
and again as per crop needs (Prajapati 2016). Most Indian soils are deficient in both 
available and unavailable forms of potassium; being one of the most important mac-
ronutrients for productivity, potassium has become a yield-limiting factor in crop 
production (Rajawat et al. 2016). The availability of K in the soil for plant uptake is 
dependent on many factors including the forms and level of K, such as solution, 
exchangeable and nonexchangeable forms, and varying degrees of weathering of 
such K-minerals as biotite, muscovite, and feldspar (Sparks and Huang 1985). 
However, there is no reserve source of good-quality potassium-bearing minerals in 
India for commercial K-fertilizer production; hence, the entire required amount of 
K-fertilizers is imported in the forms muriate of potash (KCl) and sulfate of potash 
(K2SO4). The minerals are a reservoir of nutrients in the soil (Uroz et al. 2007), and 
India is very lucky to hold the world’s largest reserves of sheet mica and produce the 
most in the world. The use of waste mica (WM) with efficient K-solubilizers may 
fulfill the requirement of plant K. Feldspar and mica are the major sources of inor-
ganic K in soils. The Geological Survey of India (GSI) has stated that Koderma, a 
district in the state of Jharkhand (India), is the world’s largest mica reserve and has 
approximately 95% of India’s mica, including Jharkhand (60%), Andhra Pradesh 
(25%), and Rajasthan (10%). However, other areas such as Maharashtra, Madhya 
Pradesh, West Bengal, Karnataka, Kerala, Tamil Nadu, Orissa, Haryana, and 
Himachal Pradesh, account for only 1% of the mica production of India (Singh et al. 
2018).

Among the efficient bacteria/rhizobacteria, Bacillus mucilaginosus (Basak and 
Biswas 2008) and Bacillus edaphicus NBT (Sheng 2005) are reported as 
K-solubilizers for the cotton crop. Rock mineral products are solubilized very 
slowly to the available form of K. Ground rock acts as a slow releaser of K-fertilizer 
in different conditions (Prajapati and Modi 2014). Imbalanced applications of 
chemical fertilizers show negative environmental influence and also increase culti-
vation cost. Thus, judicious application of potassium-solubilizing bacteria (KSB) 
has been considered as an eco-friendly approach (Rajawat et  al. 2012). Many 
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efficient microbes are able to solubilize the fixed form of K by direct and indirect 
mechanisms such as acidolysis, production of organic acids, chelation, complexoly-
sis, and ion-exchange reactions (Meena et al. 2013). These transformations have 
been a subject of study for a long time and are still a matter of curiosity. Efficient 
use of KSB as inoculants for sustainable agriculture may allow replacement of 
chemical fertilizer.

13.2	 �Potassium (K) and Its Importance

The requirements of plants for potassium (K) are greater than those for any other 
soil-supplied nutrient, except nitrogen (Table 13.1). All crops require K, especially 
plants with a high carbohydrate content such as banana and potatoes. K functions in 
the opening and closing of the stomata because of its presence in the guard cells of 
leaves of plants and also in drought tolerance and regulation of the cell membrane 
(Verma et al. 2015). Indian soils having a range of 5–300% total K (Mengel and 
Kirkby 1987) have four forms of K (nonexchangeable, solution, exchangeable, and 
structural). K is a major essential macronutrient for the growth and development of 
plants, essential in all cell metabolic processes. Consequently, K deficiencies can 
become a problem because K is easily decreased in soils. Applications of efficient 
microbes have a major function in agriculture by converting the unavailable forms 
of a nutrient to available forms.

Table 13.1  Requirements of potassium (K) in soil system

Soil Location Crop K (kg ha−1)
Typic chromuserts Rahuri, Maharashtra Gram 273
Black soil Jabalpur Gram 577
Calcareous soil Bihar Gram 143
Acid Alfisol Kangra (HP) Maize 164
Black soil Jabalpur Maize 300
Calcareous soil Bihar Maize 136
Acid Alfisol Kangra (HP) Rice 296
Black soil Jabalpur (MP) Rice 380
Black soil Guntur, Andhra Pradesh Rice 258
New alluvial soil Kalyani, West Bengal Rice 195
Calcareous soil Bihar Rice 221
Acid Alfisol Kangra (HP) Wheat 166
Alluvial IARI, New Delhi Wheat 283
Typic chromuserts Rahuri, Maharashtra Wheat 225
Black soil Jabalpur Wheat 379
Calcareous soil Bihar Wheat 163
Old alluvial soil Kalyani, West Bengal Wheat 448
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13.3	 �Availability in Soil

Most (90–98%) of the K is found in the fixed form; another form of K, which is 
nonexchangeable (~10%), is predominantly present in the interlayer K of nonex-
panded forms as ilite and lattice in K-feldspars (Fig. 13.1). Common soil potassium-
bearing minerals, in the order of availability of their potassium to plants, are biotite, 
muscovite, orthoclase, and microcline (Sparks 1987; Huang and Longo 1992).

Meena et al. (2015b) studied the release of K from biotite and muscovite with 
four K-solubilizers at 7, 14, and 21 days of incubation. The K-solubilization capac-
ity of various isolates showed a significant change in muscovite and biotite powder. 
The soluble K-contents in all isolated treatments were significantly higher than 
control.

13.4	 �K-Solubilization

Many researchers have studied solubilization/mobilization/mineralization world-
wide. Meena et al. (2015a) isolated K-solubilizers from soil after primary and sec-
ondary screening: efficient strains were characterized up to genus level. They 
concluded that application-efficient K-solubilizers enhance K availability in agri-
cultural soils. P- and K-solubilizers not only can activate the insoluble phosphate 
and potassium mineral but can also change that into available P and K (Wu et al. 
2005). Thus, the quality of crops can be improved, the effect on the environment can 
be decreased, the physicochemical properties improved, and the cost of production 

Fig. 13.1  Potassium dynamic in soil system
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reduced. Rate of K release from the K-bearing illitic minerals in soil is a much 
slower process compared to plant K uptake rate, especially at the vital growth 
stages, thereby affecting plant growth (Rawlings 2002; Diep and Hieu 2013; Maurya 
et al. 2014).

13.5	 �K-Solubilizing Mechanisms

Production of different organic acids such as oxalic, tartaric, gluconic, 2-ketoglutonic, 
acetic, malic, and succinic acid (Maurya et  al. 2014) enhance chelation (Meena 
et al. 2015a) and acidolysis (Styriakova et al. 2003; Meena et al. 2015b). Experimental 
results showed that production of organic acids enhances K availability in agricul-
tural soils. Another report showed that the K-solubilization could be attributed to 
excreting various organic acids that involved either directly dissolved rock K or 
chelated silicon ions to bring potassium into solution form (Prajapati et al. 2012). 
pH of the culture solution did not significantly change during incubation, indicating 
that acids were not excreted in significant quantity. Thus, dissolution of K- mineral 
is not pH dependent as in case of P-solubilization there are many mechanisms of 
K-solubilization production of polysaccharides (Table 13.2). These polysaccharides 
contain some free carboxylic groups that cause chelation, and this caused the disin-
tegration of K-minerals.

Table 13.2  Potassium-solubilizing microbes (KSMs) produce various organic acids in different 
strains, which help in solubilization of insoluble potassium to soluble potassium

Organism
Predominant acid 
produced References

Penicillium frequentans, 
Cladosporium

Oxalic, citric, gluconic 
acids

Argelis et al. (1993)

Paenibacillus mucilaginosus Tartaric, citric, oxalic Liu et al. (2012) and Hu et al. 
(2006)

Aspergillus niger, Penicillium sp. Citric, glycolic, 
sucinnic

Sperber (1958)

Bacillus megaterium, Pseudomonas 
sp., Bacillus subtilis

Lactic, malic, oxalic, 
lactic

Taha et al. (1969)

Bacillus megaterium, Citrobacter 
freundii

Citric, gluconic Taha et al. (1969)

Arthrobacter sp., Bacillus sp., B. 
firmus

Lactic, citric Bajpai and Sundara (1971)

Aspergillus fumigatus, Aspergillus 
candidus

Oxalic, tartaric, citric, 
oxalic

Banik and Dey (1982)

Pseudomonas aeruginosa Acetate, citrate, 
oxalate

Sheng et al. (2003) and Badar 
et al. (2006)

Bacillus mucilaginosus Oxalate, citrate Sheng and He (2006)

I. Bahadur et al.



www.manaraa.com

263

13.6	 �Conclusion and Future Prospects

Efficient application of K-solubilizers along with waste mica (muscovite and bio-
tite) could be a viable strategy to solubilize the insoluble form of K to sustain crop 
and soil health. Further long-term field studies are needed to observe the effect of 
the new fertilization method and tested to promise a large-scale field application.

The judicious use of K-solubilizers is providing an alternative eco-friendly tool 
to substitute for chemical fertilizer. These efficient K-solubilizers will be identified 
from the many rhizospheric soils and advocated for use in croplands among farmers 
based on field testing on many crops. By using these alternatives, farmers can solu-
bilize the K present in their own agricultural soil and save as much as 25–40% of 
their K-fertilizer requirement and expenses. Overall, it may be said that although 
with many effective advantages, the commercial propagation of potassium solubi-
lizers and their preservation and transportation to a farmer’s fields for crop produc-
tion is a challenge yet to be fulfilled.
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Abstract
Plants are subjected to many abiotic stresses in the environment. These abiotic 
stresses may be aggravated in the coming future due to global climate change. 
Almost all the environmental stress causes the production of ethylene in plants, 
which is detrimental to plant survival. Therefore, managing ethylene generation in 
plants is becoming as an attractive strategy to increase crop yields. 
1-Aminocyclopropane-1-carboxylic acid is a precursor for production of ethylene 
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in plants. The plant growth-promoting rhizobacteria that possess 1-aminocyclo-
propane-1-carboxylic acid deaminase activity are known to modulate plant growth 
under extreme environmental conditions by lowering ethylene concentrations in 
plants; hence, they can be termed as ‘stress modulator’. Ethylene is also known to 
reduce the nodule formation in various legumes prevailing under abiotic stress. 
1-Aminocyclopropane-1-carboxylic acid deaminase-producing rhizobial strains 
can intensively promote nodulation in legumes under stress conditions. Another 
approach for combating abiotic stress in plants is through the incorporation of 
acdS gene from bacteria to crop plants. The recent molecular biology tools 
(metagenomics, transcriptomics, proteomics and next-generation sequencing) 
have been implied to reveal the diversity and application of potential 1-aminocy-
clopropane-1-carboxylic acid deaminase-producing plant growth-promoting rhi-
zobacteria under various environmental conditions. These rhizobacteria have 
shown a vital interplay in conferring resistance and adaptation of plants to various 
abiotic stresses and have immense potential in organic farming and sustainable 
agriculture.

Keywords
PGPR · ACC deaminase · Abiotic stress · Ethylene

14.1	 �Introduction

Plants require optimum environmental condition for their proper growth and devel-
opment. Since plants are static, they have to face several adverse environment con-
ditions (heat, cold, salinity, drought, flooding, etc.). The intensity of these stresses 
might be more in the coming future due to global climate change. Due to the out-
come of these different environmental stresses, plant growth is eventually lower and 
results in yield loss. Almost all the environmental stress leads to ethylene produc-
tion in plants, which has detrimental effect on plant growth under such conditions. 
Therefore, managing ethylene generation in plants is becoming as an attractive 
strategy to increase crop yields. The major challenges confronted during breeding 
and genetic engineering of plants to overcome abiotic stress are because of the com-
plexity of stress-responsive pathways. Besides, these interventions are tedious and 
time-consuming and have limited success rate.

Recently, it has been very effectively demonstrated by many researchers that use/
inoculation of plant growth-promoting rhizobacteria (PGPR) has improved plant 
growth and productivity under several environmental stresses (Bharti et al. 2016). 
PGPR enhances plant growth and productivity by a wide array of mechanisms like 
solubilization of inorganic nutrients (P, Zn, K), production of phytohormones, 
modulation of stress ethylene and stimulation of root growth (Gontia-Mishra et al. 
2017a). The PGPRs that contain 1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase activity can modulate plant growth under extreme environmental 
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conditions by altering ethylene concentrations in plants; hence, they can be termed 
as stress modulator (Kang et al. 2010).

The chapter summarizes the importance of ACCD-PGPR (ACC deaminase-
producing PGPR) in sustainable management of abiotic stresses. The first section of 
the chapter illustrates the detrimental effect of abiotic stresses which leads to 
ethylene generation on crop plants. The later part tabulates the role of ACC 
deaminase enzyme in lowering consequences of stress ethylene in plants. The third 
section emphasizes that ACCD-PGPR can influence the development of nodules in 
legume plant prevailing in the stressful conditions. The last section demonstrates the 
influence of novel molecular biology technologies in better use of ACCD-PGPR for 
sustainable agriculture.

14.2	 �Role of Ethylene in Regulation of Plant Processes 
and Stress Responses

Ethylene is the smallest and simplest form of plant hormone produced by plants and 
regulates various important plant processes (Abeles et al. 1992). These processes 
include seed germination, fruit ripening, senescence, development of root hair and 
nodules, root elongation, etc. (Johnson and Ecker 1998). Another mechanism which 
generates ethylene is induction of a wide array of abiotic and biotic stresses 
encompassing exposure to temperature extremes, salt, drought, flooding, heavy 
metals, organic and inorganic chemicals, nematodes and phytopathogens (Gontia-
Mishra et al. 2014). Hence the ethylene produced during such stress conditions is 
regarded as ‘stress ethylene’ (Glick 2014). This kind of ethylene initiates the 
transcription and further expression of genes resulting in plant senescence.

The ethylene biosynthesis in plants follow a simple regime where methionine is 
transformed to S-adenosyl methionine (SAM) by enzyme SAM synthetase, which 
is subsequently used as substrate by ACC synthase to generate 1-aminocyclopropane-
1-carboxylic acid (ACC). Thus, the ACC produced in the above step act as precursor 
for production of ethylene by the action of ACC oxidase (Wang et al. 2002).

14.3	 �PGPR with Special Context to ACC Deaminase 
Production

The enzyme ACC deaminase was originally characterized by Honma and 
Shimomura (1978), and sooner its importance was recognized in plant growth pro-
motion (Glick et al. 1998). The role of PGPR possessing ACC deaminase activity 
in combating the effect of stress ethylene is very well studied. The bacterial ACC 
deaminase catalyses the cleavage of ACC to ammonia and α-ketobutyrate, leading 
to lower ethylene concentration in stressed plants (Jacobson et al. 1994; Glick et al. 
1999). When ACC deaminase-containing PGPRs are present on the roots of a 
stressed plant, they act as a reservoir for ACC, retarding the ethylene levels in 
plants and increasing their root growth (Glick et  al. 1998). Hence, plants 
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inoculated with ACC deaminase-containing PGPR can better tolerate various stress 
conditions due to their extensive root growth. The by-product of ACC hydrolysis to 
ammonia and α-ketobutyrate are utilized by PGPRs as nutrients for their growth. 
How PGPR containing ACC deaminase activity helps in managing the levels of 
ethylene due to abiotic stress and enhances plant growth and development is shown 
in Fig.  14.1. The ACC deaminase activity is widespread in bacteria including 
Alphaproteobacteria (Ma et al. 2003a), Betaproteobacteria (Gontia-Mishra et al. 
2017b) and Gammaproteobacteria (Gontia-Mishra et  al. 2017a), Actinobacteria 
(Siddikee et al. 2010; Gontia et al. 2011; Jha et al. 2012), Firmicutes (Siddikee 
et  al. 2010; Timmusk et  al. 2011), Bacteroidetes and Flavobacterium (Marques 
et al. 2010; Mesa et al. 2015).

14.4	 �Abiotic Stresses in Plant: Managing Stress Response 
Through the Inoculation of ACC Deaminase-Producing 
PGPR

Plants face multiple types of abiotic stresses in the environment. ACCD-PGPR pro-
tects the plant from the adverse effect of environmental stressors such as salinity, 
water deficit, waterlogging, high temperature, metal toxicity and organic pollutants 
by lowering the activity of stress ethylene (Glick 2014). The use of ACCD-PGPR 
for alleviating various abiotic stresses and their positive influence on host plant is 
shown in Table 14.1.

Fig. 14.1  Diverse abiotic stresses and function of ACC deaminase-producing PGPR in plant 
growth promotion using various mechanisms
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14.4.1	 �Salinity

Salinity is an important environmental stress that severely affects plant productivity 
worldwide. It disrupts photosynthesis and increases photorespiration, altering the 
normal ion balance in plant cells (Miller et al. 2010). The main effect of salt on plant 
growth compasses nutrient imbalance by rendering proper nutrient uptake and/or 
transport to the shoot causing ion deficiencies (Munns and Tester 2008). The ACCD-
PGPRs have been broadly used to combat salinity stress in many crops including 
tomato, groundnut, etc. (Mayak et al. 2004; Saravanakumar and Samiyappan 2007).

14.4.2	 �Drought

Insufficient availability of water, i.e. drought, is another important stress which 
adversely affects the plant growth and yield. This stress affects several physiologi-
cal and biochemical functions of plants like decreased water potential and turgor 
loss and stomatal closure and disturbs membrane and protein structure (Kaushal and 
Wani 2016). Overall the drought stress retards plant growth leading to yield losses, 
and hence there is need to resort on strategies for better plant growth under this 
stress. Several authors have reported the utilization of ACCD-PGPR for ameliorat-
ing water deficit stress in crops such as chickpea (Tiwari et al. 2016), wheat (Gontia-
Mishra et al. 2016a) and Lavandula dentata (Armad et al. 2016).

14.4.3	 �Flooding/Waterlogging

In the present scenario, change in climate drastically affects the availability of water 
leading to drought or flooding/waterlogging in some areas (Loreti et  al. 2016). 
Flooding can perturb many physiological processes of plants such as respiration in 
roots, making the environment anoxic (low or no O2), affecting the yield of terres-
trial crops worldwide (Sairam et al. 2009; Striker 2012). During flooding condition, 
ethylene is generated in quite high amounts inside the plant tissue due to the 
increased activity of ACC synthase in the waterlogged roots (Gontia et al. 2014). 
The ethylene produced hardly escapes from the plant tissue due to flooding, leading 
to various stress-related responses in plants (Loreti et al. 2016). PGPRs with ACC 
deaminase activity are capable of rerouting ACC from the ethylene biosynthesis 
pathway in the root of host plants, hence causing low ethylene production. This 
strategy has been applied by few researchers to reduce the flooding/waterlogging 
stress in many plants (Barnawal et al. 2012; Li et al. 2013).

14.4.4	 �Temperature (Chilling and Heat)

Extreme temperatures either low or high cause substantial yield loss in crop plants. 
Plants mostly adjust their cellular metabolism which is disrupted due to rise or fall 
in temperatures (Yadav 2010). A variation in temperature leads to drastic change in 
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the structure of membranes, catalytic properties, function of enzymes and transport 
of nutrients (Subramanian et al. 2016). The chilling temperature is termed as low 
temperature between 0 and 15 °C, which accounts to yield loss in several tropical 
and subtropical crops. Cold stress usually causes low germination, retarded growth 
of seedlings, chlorosis of leaves and reduced tillering (Yadav 2010). In horticultural 
crops, chilling induces surface lesions, discoloration due to reduced chlorophyll 
content and accelerated senescence. Similar to other environmental stresses, chill-
ing also triggers ethylene generation which hampers the plant growth.

There are few reports on the use of ACCD-PGPR for alleviation of chilling stress 
in grapevine and tomato (Theocharis et al. 2012; Subramanian et al. 2016). Recently, 
psychrotolerant PGPRs (Flavobacterium sp., Pseudomonas frederiksbergensis and 
Sphingomonas faeni) with no ACC deaminase activity were transformed with a 
plasmid pRKACC harbouring the acdS gene from Pseudomonas putida UW4. 
These transformed PGPRs which overexpressed acdS gene were examined to 
determine their role in mitigating chilling stress in tomato and foxtail and finger 
millets (Subramanian et al. 2015; Srinivasan et al. 2017).

14.4.5	 �Heavy Metals

The contamination of agriculture soil by heavy metals is of utmost environmental 
concern worldwide. Some of the heavy metals such as zinc, copper, cobalt, etc. are 
required by the plant in trace amounts, but high concentrations of these essential 
elements are deleterious to plant growth. The heavy metals and metalloids include 
lead, zinc, cadmium, selenium, chromium, cobalt, copper, nickel, mercury and arse-
nic. Since in plant system the roots are essentially involved in uptake of nutrients 
and metals, the high concentration of heavy metals in soils induces the generation 
of stress ethylene which in turn inhibits root growth (Saleem et al. 2007). There are 
a large number of reports on inoculation of ACCD-PGPR for improvement of plant 
growth under metal stress (Burd et al. 1998; Chen et al. 2010; Plociniczak et al. 
2014). Plants are usually utilized to remediate/metabolize the toxic compounds 
(heavy metals) into less toxic intermediates in contaminated soil; this process is 
termed as phytoremediation (Glick 2010).

Phytoremediation is an effectual and comparatively inexpensive and eco-friendly method 
for clearing out the contaminated soil (Arshad et al. 2007). The application of ACCD-PGPR 
supports phytoremediation by enhancing the root development under metal stress which fur-
ther increases the uptake of toxic metals. The use of ACCD-PGPR for promoting plant 
uptake of metals has been very well reviewed by Glick (2010) and Arshad et al. (2007).

14.4.6	 �Organic Pollutants

Polycyclic aromatic hydrocarbons (PAHs), herbicides and pesticides are anthropo-
genic sources of pollutants that can contaminate the soil (Van Oosten and Maggio 
2015). The organic pollutants retard plant development via unknown mechanisms; 
this is the outcome of stress ethylene generation. The use of plants alone for 
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remediation confronts many limitations. The large number of soil microorganisms 
has the property of degrading organic pollutants in the environment including 
refrigerants and organic solvents. The ACCD-PGPRs have shown persistent result 
in augmenting plant development under the existence of organic pollutants (Reed 
and Glick 2005; Xun et al. 2015).

These PGPRs can also support the associated plants in phytoremediation by bio-
transformation of toxic elements. It is a known fact that ACCD-PGPR contributes 
largely in root elongation and growth which can account for better phytoremedia-
tion of organic compounds by the host plants.

14.5	 �Role of ACCD-PGPR in Nodulation Under Stress 
Conditions

Symbiotic nitrogen fixation is essential for sustainable agriculture. The roots of 
legumes generally coexist with nitrogen-fixing bacteria especially rhizobium, which 
aid in the development of nodules. The development and growth of nodules respond 
to various extreme environmental stress and plant hormones (abscisic acid, auxin, 
cytokinin and ethylene). Ethylene production is generally induced due to stress 
conditions, which is accumulated in plant tissues (Nascimento et  al. 2012a). 
Ethylene is also known to adversely modulate the nodule formation in various 
legume plants (Gage 2004) such as Medicago sativa (Peters and Crist-Estes 1989), 
Pisum sativum and Trifolium repens (Lee and LaRue 1992). It reduces the nodule 
numbers as well as notably drops the levels of fixed nitrogen (Guinel 2015). The 
ACC deaminase activity is noted in many rhizobium species such as Sinorhizobium 
meliloti, Rhizobium leguminosarum and Mesorhizobium loti (Duan et al. 2009).

It is a very well-accepted fact that ACC deaminase-producing rhizobial bacteria 
can nodulate the roots of associated legumes intensively, under stress and non-stress 
conditions (Ma et al. 2003b). It was known that native rhizobium species have a 
lower ACC deaminase activity in comparison with free-living bacteria. Hence, there 
is ample literature demonstrating the reduced level of stress ethylene in pulse crops 
inoculated with ACCD-PGPR (Duan et al. 2009; Shaharoona et al. 2011). It was 
documented by Shaharoona et al. (2006) that co-inoculation of Pseudomonas putida 
(ACC deaminase-producing bacteria) with Bradyrhizobium japonicum in mung 
bean enhanced the nodulation. Similarly, in another study, the co-inoculation of 
ACCD-PGPR (Serratia proteamaculans and Citrobacter koseri) with Mesorhizobium 
ciceri increased the nodulation in chickpea (Shahzad et al. 2010).

These were examples of increased nodulation in legume crops by co-inocula-
tion with ACC deaminase-producing bacteria under non-stress condition, but 
there are other experiments in which the co-inoculation with ACC deaminase-
producing bacteria have proved better nodulation in legumes under various envi-
ronmental stress. It was noted that the inoculation of Pseudomonas syringae 
bacteria having ACC deaminase activity along with Rhizobium phaseoli pro-
moted better seedling growth and improved nodulation capacity in mung bean 
under saline condition (Ahmad et al. 2011). In an experiment, the co-inoculation 
of ACCD-PGPR (Bacillus subtilis LDR2) with rhizobial bacteria (Ensifer 
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meliloti) enhanced nodulation and root growth of fenugreek under drought stress 
(Barnawal et  al. 2013). In a similar study, the application of ACCD-PGPR 
Arthrobacter protophormiae was reported to stimulate plant growth through 
improved colonization of Rhizobium leguminosarum resulting in a better nodula-
tion in Pisum sativum under salinity stress (Barnawal et  al. 2014). In another 
instance, the inoculation of rhizobacteria Pseudomonas sp. having ACC deami-
nase activity, along with Mesorhizobium sp. and M. metallidurans, increased the 
nodule weight of Lotus corniculatus growing in metal-contaminated soil 
(Soussou et al. 2017). In another strategy, gene for ACC deaminase (acdS) was 
overexpressed in rhizobial bacteria which lack ACC deaminase activity, proving 
a practical method to improve their nodulation in legumes.

The earliest report states that the heterogeneous production of acdS gene from 
Rhizobium leguminosarum into Sinorhizobium meliloti and the inoculation of trans-
formed S. meliloti in alfa-alfa enhanced nodulation by 40% in comparison with 
inoculation with non-transformed S. meliloti (Ma et  al. 2004). Additionally, 
Mesorhizobium loti MAFF303099 which was genetically modified to continuously 
express ACC deaminase stimulated better nodule development in Lotus plants 
(Conforte et  al. 2010). Similarly, Mesorhizobium ciceri strain LMS-1which was 
genetically engineered to express the acdS gene of Pseudomonas putida UW4, 
when used as inoculants in chickpea, demonstrated improvement in nodulation and 
overall plant growth under salt-affected soil (Nascimento et al. 2012a, b; Brígido 
et al. 2013). A congruent report of the inoculation of transformed Sinorhizobium 
meliloti (overexpressing ACC deaminase gene from Rhizobium leguminosarum) in 
Medicago lupulina under copper stress demonstrated an affirmative effect by better 
adaptability and increased the nodulation in plants (Kong et  al. 2015). Hence, it 
could be concluded that the ACCD-PGPRs, either in co-inoculation experiment or 
using transformed Rhizobium strain expressing acdS gene, are capable to improve 
the symbiotic association of the bacteria under normal and stress conditions. The 
different strategies to improve nodulation in legumes under stress condition via the 
use of ACC deaminase-possessing rhizobial strains are presented in Fig. 14.2.

Ethylene produced due to abiotic stress reduces nodulation in leguminous plants. 
The application of either ACC deaminase-producing rhizobium strain or co-inocula-
tion of rhizobium strain (non ACC deaminase producing) with ACCD-PGPR (ACC 
deaminase-producing PGPR) improves nodulation in legumes under abiotic stress as 
well as non-stress condition. Rhizobium strain transformed with acdS gene exerts 
similar effect on nodulation in legumes under abiotic stress condition. Figure 14.2 
summarizes different approaches used to enhance nodulation in legumes under 
adverse environmental condition incorporating ACCD-PGPR.

14.6	 �Development of Transgenic Plants Overexpressing acdS 
Gene

Transgenic plants, which exhibit new or improved phenotypes, are engineered by 
the overexpression and/or introduction of genes from other microbes like bacteria. 
Over the years, various genetically modified plants were developed overexpressing 
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acdS gene from bacteria and reported to lower the ethylene concentration in plants 
as well as enhanced the tolerance to various kinds of abiotic stresses (reviewed by 
Gontia-Mishra et al. 2014).

The transgenic tomato, canola and tobacco transformed to express acdS gene 
from bacteria were able to survive better in soil contaminated with various heavy 
metals such as Ni, Co, Cu, As, Pb and Zn (Grichko et al. 2000; Nie et al. 2002; 
Stearns et  al. 2005; Zhang et  al. 2008). Similarly, transgenic canola and tomato 
expressing acdS genes (from Enterobacter cloacae and Pseudomonas putida UW4) 
demonstrated remarkable tolerance to flooding (Grichko and Glick 2001; Farwell 
et al. 2007). In another report, a transgenic canola plant overexpressing acdS gene 
from Pseudomonas has demonstrated improved salt tolerance (Sergeeva et  al. 
2006). In a recent study, transgenic Arabidopsis plants were created overexpressing 
acdS gene from P. fluorescens. The transgenic plants showed better performance in 
overall growth parameters than the non-transformed plants under ethylene and salt 
stress (Kim et al. 2014).

Additionally, transgenic Arabidopsis plants were developed which expressed 
acdS gene from Trichoderma asperellum ACCC30536 and showed better 
performance under salt stress. These transgenic plants had improved root 
development and reduced reactive oxygen species (ROS) level in terms of antioxidant 
enzymes in comparison with non-transformed plants under stress condition (Zhang 
et al. 2015). Similarly, transgenic Camelina sativa (oil seed crop) was developed 
which expressed acdS gene from P. putida UW4 under the control of either the 
CaMV 35S promoter or the root-specific rolD promoter. The transgenic C. sativa 
lines had enhanced growth parameters, yield and oil content in contrast to wild-type 
plants under salinity (Heydarian et  al. 2016). It could be noted from the above 
studies that transgenic plants expressing the acdS gene have facilitated plant growth, 

Fig. 14.2  Effect of ACC deaminase-producing PGPR on nodulation of leguminous plants under 
abiotic stress condition
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especially root growth under various abiotic stresses, making this strategy fit for use 
in reducing the effect of different stresses on the crop plants.

14.7	 �Omics-Based Approaches in PGPR Research

Various ecological niches have to be intensively screened to unveil the microbial 
diversity with extensive potential. With advent of new techniques in molecular 
biology such as use of qPCR can be utilized to detect efficient ACCD-PGPR species 
residing in soil, rhizosphere or endophytes. Another upcoming approach, i.e. 
metagenomic analysis of particular soil or plant tissue, is utilized to unravel the 
microbial diversity through culture-independent method. This method depends on 
the isolation of genome of a specific habitat which is subsequently cloned and 
analysed to disclose the ecology and functions of uncultivable microbial community. 
Combined approach of sequence-based as well as function-based examination of 
metagenomic libraries can lead to mine novel genes for PGPR activities from 
uncultivable community will append enormously to our knowledge of their 
functionality in plant growth promotion (Nikolic et al. 2011).

The novel gene obtained through the metagenomic studies can be exploited to 
design and develop PGPRs with improved performance (Leveau 2007). Thus an 
amalgamation of sophisticated culture-independent molecular approaches along 
with culture-based microbiological applications should be applied to get genetically 
diverse PGPR to perform efficiently in agriculture. With the advent in genome 
sequencing using various next-generation sequencing (NGS) techniques, the data 
on complete genome sequence of bacteria has increased. The information obtained 
from complete genome data is extensively utilized to derive interesting findings. 
Recently, many agriculturally important PGPRs such as Pseudomonas aeruginosa 
PGPR2 (Illakkiam et  al. 2014), Bacillus sp. strain PTS-394 (Qiao et  al. 2014), 
Bacillus amyloliquefaciens subsp. plantarum UCMB5113 (Niazi et al. 2014) and 
Methylobacterium oryzae (Kwak et al. 2014) have been completely sequenced.

The genome sequencing of PGPR has opened up a new venture and opportuni-
ties to deduce genes for different metabolic pathways and interaction with other 
molecules to initiate plant growth promotion. In this context, Pseudomonas spp. 
UW4 (showing ACC deaminase activity) have been sequenced which provided 
insights to various mechanism utilized by the bacterium to promote plant growth. 
The whole-genome sequencing revealed the presence of genes actively participating 
in plant growth promotion such as indole-3-acetic acid (IAA) and acetoin 
biosynthesis, ACC deaminase and siderophore production and phosphate 
solubilization (Duan et al. 2013). The genome analyses of these important PGPRs 
will definitely endow an elementary basis for future studies towards understanding 
the functionality of these PGPR and plant-beneficial microbe interactions as well as 
to improve the agricultural yields.

The physiological and biochemical data from plant-microbe interaction probably 
ignore the plethora of influence on each other, thus motivating the utilization of 
recent functional approaches. Many of the mechanisms underlying plant-microbe 
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dialogue in the rhizosphere are poorly understood. Multi-omics approaches 
encompassing genomics, transcriptomics, proteomics and metabolomics integrated 
studies on plant-microbe interaction and their external environment provide 
voluminous information to generate a better depiction of cells’ inside (Meena et al. 
2017). Transcriptomics and proteomics approaches are being indulged to elucidate 
mechanistic insights of the interaction of plant-microbe under stress conditions 
(Cheng et al. 2010). A microarray-based study of plant-microbe interaction amid 
rice and Azospirillum sp. revealed modulation of 16% of total rice genes (Drogue 
et al. 2014).

Additionally, halotolerant PGPR having ACCD activity positively stimulated the 
transcription profile of some antioxidant genes in peanut seedlings under salinity 
stress (Sharma et  al. 2016). Proteomics is an upcoming strategy to divulge the 
expressions of whole proteins in plant-microbe interactions (Parray et al. 2016). In 
a study, the interaction of ACCD-PGPR Pseudomonas putida UW4 with cucumber 
plant under waterlogging condition was examined using two-dimensional difference 
in-gel electrophoresis (DIGE) to detect regulation of proteins (Li et  al. 2013). 
Similarly, the influence of Pseudomonas putida on the proteomic profiles of canola 
was investigated facing salinity stress (Cheng et al. 2012).

14.8	 �Concluding Remarks and a Look Forward

Environmental stresses are becoming a major problem which claim productivity 
losses in agriculture. The use of PGPR in agriculture is attaining ample attention to 
mitigate various environmental stresses. In this respect, ACCD-PGPR has the selec-
tive advantage over other PGPRs as they protect the plants from the effect of stress 
ethylene under abiotic stress conditions. In the conclusion, it is recommended to 
extend the number as well as diversity of ACCD-PGPR from diverse ecological 
niches and investigate their role in alleviating stress in crop plants. Still there is a 
lacuna in our discernment of plant-microbe interaction. With the introduction of sev-
eral -omics techniques, the new insights for better perception of plant-microbe inter-
actions can be bridged. These advances definitely have application in agriculture to 
enhance the crop productivity under stress conditions. PGPRs have shown a vital 
interplay in conferring resistance and adaptation of plants to different abiotic stresses 
and have immense potential in resolving future food security issues. In the past 
decade, the use of ACCD-PGPR to alleviate stress has been implied to a limited 
extent. Hence, utilization of ACCD-PGPR either alone or in co-inoculation with 
other effective PGPRs needs extensive implementation for sustainable agriculture. 
Another vital approach in the above line could be the employment of transformed 
PGPR with acdS gene and transgenic plants overexpressing acdS gene from micro-
bial origin in agriculture to combat productivity losses due to abiotic stress. The 
transcriptomic study reveals the interaction of crops with PGPR which may provide 
the insights on how these PGPRs stimulate host machinery to adapt in extreme envi-
ronmental conditions. Simultaneously, future research must be focused to increase 
the number of potential ACCD-PGPR strains to be used as stress modulators.
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Abstract
Rhizobacteria, which live around or on plant root surfaces, improve plants 
directly or indirectly by their plant growth-promoting abilities. Various studies 
about plant growth-promoting rhizobacteria (PGPR) show enhanced plant 
growth, development, and productivity under stressed and nonstressed condi-
tions. PGPR produce some plant growth regulators, 1-aminocyclopropane-1-
carboxylate (ACC)-deaminase, siderophores, and release organic acids. PGPR 
also have N-fixing and phosphate- (P), potassium- (K), and zinc- (Zn) solubiliza-
tion abilities and increase the acquisition of nitrogen and phosphorus. PGPR 
produces ACC-deaminase and reduces the ethylene concentration in plant tissues 
when the plants are exposed to stress. PGPR may also reduce the occurrence of 
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secondary soil salinity by reducing fertilizer use. Thus, rhizobacteria can ensure 
sustainable agricultural production through these mechanisms in environmental 
stress factors.

Keywords
Beneficial bacteria · Abiotic stress · Environment · Agriculture

15.1	 �Introduction

Agriculture meets our food demands, our food security, and provides employment. 
Further, agriculture contributes to the national economy in many countries where 
people earn their living with agriculture. However, 38% of the suitable agriculture 
lands of the world has been degraded by agricultural practices. Also, abiotic stress 
factors have negatively affected many suitable agricultural areas (Reddy 2014). In 
the past century, increasing water scarcity, drought, soil and water salinity, and envi-
ronmental pollution have led to significant crop losses worldwide. Nowadays, popu-
lation problems and declining utilizable agricultural areas have become a threat 
affecting sustainable agriculture production globally (Shahbaz and Ashraf 2013). 
Also, various adverse environmental conditions such as soil and water salinity, 
drought, heavy metal toxicity, extreme temperatures, and flood affect the production 
and cultivation systems of agricultural crops. Because of the decrease in available 
agricultural lands, good management practice of the remaining agricultural land is 
requisite to maintain production, obtain economic growth, protect biodiversity, and 
meet the increasing food demands. In this context, sustainable agricultural land has 
been protected and maintained with good agricultural practices and organic farming 
methods in the past decades. Beneficial microorganisms (bacteria, mycorrhizae, 
insects, etc.) are part of these sustainable agriculture practices. Bacteria provide 
benefits by their capabilities for such actions as N2-fixing, phosphate solubilization, 
and production of siderophores, indole acetic acid (IAA), cytokinins, and 1-aminoc
yclopropane-1-carboxylate (ACC)-deaminase. This chapter highlights the potential 
of beneficial bacteria for our agro-ecosystems and sustainability of lands.

15.2	 �Plant Abiotic Stress Factors, Damage, and Plant 
Response

15.2.1	 �Salinity Stress

Salinity is the main environmental stress factor that reduces agricultural area and 
crop yield and quality. Drought stress also triggers soil salinity (Yamaguchi and 
Blumwald 2005); 20% of the Earth’s agriculture areas (~45 million ha) is salt 
affected and degraded. The soil salinity rate is estimated as 30% of the global 
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agricultural lands (Shrivastava and Kumar 2015). Salinization occurs in two ways: 
the primary type is from natural occurrences and the secondary type results from 
human activity for agricultural production. Primary salinity areas such as salt lakes, 
salt pans, salt marshes, and salt flats occur in soils and waters.

Secondary salinity results from human activities, development of land for agri-
culture, and the resultant agricultural practices, especially the use of more synthetic 
fertilizers (Bharti et al. 2013). Salinity decreased the tillers, leaf area, and yield of 
monocotyledon plant species and decreased the branch number and leaf area of 
dicotyledonous plant species (Flowers and Colmer 2008). Plants that have salt stress 
protection ability are classified as two types: halophytes and glycophytes. Although 
halophyte plants can survive under saline condition, 99% of glycophyte plants are 
killed by high saline concentrations (Eynard et al. 2005; Munns and Tester 2008). 
Plant response to salinity stress can be divided into two stages. The first stage is 
called osmotic response, in which plants accumulate Na+ and Cl− ions, which are 
not at toxic levels so plant growth is not inhibited. In this period, plants have reduced 
leaf development and area, shoot development speed, lateral bud growth, flowering, 
and crop production (Fricke and Peters 2002; Rahnama et al. 2011). In addition to 
decreased growth, plants close the stomata to prevent water loss (Fricke 2004). 
Stomata closure results in decreased carbon fixation and assimilation in leaves 
because CO2 uptake is restricted (Lenis et  al. 2011; Munns and Tester 2008). 
Therefore, photosynthetic activity is reduced by stomatal closure, and light energy 
accumulates in the leaf tissues. Light energy in excess of plant need is transferred to 
oxygen acceptors, and then reactive oxygen species (ROS) such as superoxide 
(O2

−), hydrogen peroxide (H2O2), hydroxyl radicals (OH−), and singlet oxygen (1O2) 
are produced (Møller et al. 2007). The higher ROS concentration damages cell walls 
and results in cell death (Møller et al. 2007). The next stage is ionic stress, in which 
Na+ and Cl− ions accumulate to toxic levels in leaf tissues. The excess Na+ and Cl− 
limit K+ uptake, and insufficiency of K reduces protein synthesis. The higher Na+ 
concentration raises the Na+/K+ ratio, decreases the availability of K+, and disrupts 
enzymatic processes (Bhandal and Malik 1988). In addition to Na+ accumulation, 
when Cl− ions are excessively accumulated in the leaf, acquisition of NO3

− and 
NH4

+ is reduced. The reduced NO3
− and NH4

+ levels cause decreased nitrate reduc-
tase activity in plant tissue (Tuteja 2007).

15.2.2	 �Drought Stress

Drought stress, which has appeared almost all over the world, has affected more 
people worldwide in the past 40 years than any other natural hazard. Global climate 
change is intensifying drought on the Earth’s surface and also increasing drought 
severity and duration. Drought is a complicated natural phenomenon with different 
intensity levels, periods, land coverage, and effects. Intensive drought periods cause 
severe socioeconomic and environmental problems, including degradation of natu-
ral resources, migration, famines, and low economic success. Agriculture, which 
absorbs about 80% of all drought effects in itself, is among the first of the sectors 
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that are hit and affected by drought, which has poly-effects on crop yield, food 
safety, and rural life (Anonymous 2018). Drought stress triggers interacting meta-
bolic activities, including blocking of antioxidant enzyme activity and producing 
ROS in metabolic pathways (Binzel and Reuveni 1994; Tsugane et al. 1999). The 
ROS species have a significant role in the life cycle of plants.

The reaction of plants to drought is generally described by physiologists as 
escape, avoidance, and tolerance (Levitt 1980). To escape from drought stress 
effects, plants accelerate flowering and produce seed to complete their life cycle 
before drought stress severity reaches a critical point. Avoidance is a mechanism of 
limiting transpiration or promoting water uptake. In avoidance, water loss and tissue 
dehydration do not appear in plant tissues. To restrict water loss, stomatal closure, 
increased root volume, and decreasing leaf area are significant avoidance strategies. 
Thus, plant tissues keep a high water potential. Plant tolerance to drought stress is 
defined as the ability to cope with decreased tissue water potential (Verslues et al. 
2006). This ability allows the plants to function, or at least survive, under stress 
conditions. There are differences in genotype tolerance to drought, arising from 
genotypic flexibility.

15.2.3	 �Heavy Metals Stress

In the periodic table, the 53 elements including iron (Fe), copper (Cu), zinc (Zn), 
and manganese (Mn) that are essential to plants are defined as heavy metal ele-
ments, heavy metals (HMs), whose density is more than 5 g cm−3 (Hollemann et al. 
1985). However, many essential elements have reactive features and cause toxicity 
in plants if they are accumulated at a higher level than is required. The toxic metals 
such as cadmium (Cd), lead (Pb), chromium (Cr), and mercury (Hg) have ionic 
properties similar to those of Fe, Cu, Zn, and Mn, so they can enter plants with 
transporters. Thus, these metals cause toxicity to plants when present at elevated 
levels (Kohzadi et al. 2019). When the HM elements reach a toxic level, they cause 
damage and changes in plant physiology and function. HM toxicity promotes ROS, 
which exert oxidative damage to plant cells and in plant metabolism. The oxidative 
stress triggered via HMs includes disruption of the main metabolic processes such 
as photosynthesis, electron transport, antioxidant enzyme activity, and metabolites. 
In addition, the accumulation of the ROS increases lipid peroxidation, which causes 
degradation of the cell membranes.

Moreover, ROS production is always considered detrimental to plant cells. The 
plant antioxidant defense mechanism regulates the ROS mechanism under abiotic 
stress condition. Some antioxidant enzymes such as catalase (EC 1.11.1.6), super-
oxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), glutathione peroxidase 
(1.11.1.9), glutathione reductase (EC 1.8.1.7) (CAT, SOD, POD, GPX, GR), and 
nonenzymatic antioxidants such as ascorbic acid, glutathione, α-tocopherol, and 
carotenoid, scavenge the harmful effects of ROS (Hirt and Shinozaki 2003).
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15.2.4	 �High- and Low-Temperature Stress

High temperatures cause heat stress as a global agricultural factor. High temperature 
negatively affects morphological development, biochemical properties, and the 
physiological aspects of plant species (Zandalinas et al. 2018). The damages of high 
temperature appear as a sunburned leaf, branch, and stem, leaf senescence, and 
abscission. In addition, plant and root growth are inhibited by high temperature 
(Vollenweider and Günthardt-Goerg 2005). Thus, plant growth and production may 
be reduced with drastic economic results. Under high temperatures, plants accumu-
late metabolites such as antioxidants, osmoprotectants, and heat-shock proteins 
(Bokszczanin et  al. 2013). The ROS act as signaling molecules, and antioxidant 
enzymes are produced against ROS (Bohnert et al. 2006). Low temperature dam-
ages plants in two ways, such as chilling injury and freezing injury.

Generally, chilling injury appears in tropical and subtropical region plants. These 
plants show marked physiological dysfunction when they are exposed to a low tem-
perature below 12 °C (Lyons 1973); freezing injury occurs below 0 °C tempera-
tures. The plant cells are damaged by intracellular and extracellular freezing. The 
freezing occurring in the cell could be avoided by plants; however, plant cells are 
subjected to dehydration stress when the water freezes in extracellular spaces 
(Yamada et al. 2002). The plant cell membranes are mechanically injured by solid 
ice, which is formed when the extracellular water freezes (Steponkus et al. 1993). In 
agricultural areas where subzero winter temperatures occur, plant tolerance to sur-
vive under freezing conditions is important (Levitt 1980).

Although exactly how plants continue living and survive under freezing tempera-
tures is unknown, freezing alters the membrane cryostability of plants. To avoid 
freezing injury, plants increase membrane cryostability, which may be associated 
with changes in the membrane in other cellular components surrounding the plasma 
membrane. The general thought is that the hydrophilic molecules such as sugar, 
enzymes, and dehydrins induce changes of lipids and membrane proteins to increase 
the cryostability of the plasma membrane (Lee et al. 2014; Strimbeck et al. 2015).

15.2.5	 �Flood Stress

The last abiotic stress factor for agricultural production to be discussed is a flood. In 
general, this stress appears in rice production areas, and each year, one-fourth of the 
rice lands in the world are inundated by unpredictable flash floods that appear a few 
times a year nowadays (Mackill et al. 2012). The plants need oxygen (O2) to surviv-
ing but severe flooding reduces O2 availability in soil. Aerobic respiration can be 
restricted by lower O2 levels. Flooding also causes ethylene to accumulate and 
increases CO2 concentration, depending on the light conditions of submerged plant 
organs. Flooded agricultural areas can suffer from light intensity, thus decreasing 
photosynthetic activity (Bailey-Serres and Voesenek 2008). Plant species show 
some adaptive features to survive under low O2, such as changing of the 

15  Sustainability of Crop Production by PGPR Under Abiotic Stress Conditions



www.manaraa.com

298

petiole:internode elongation ratio, cellular modifications, development of lateral 
and adventitious roots, and formation of arenchyma tissue.

15.3	 �Reactive Oxygen Species

Reactive oxygen species (ROS) are produced under various abiotic environmental 
stress conditions such as salinity, drought, low and high temperatures, HMs, nutri-
ent deficiency, and UV radiation. ROS are highly toxic and reactive, causing dam-
age to proteins, lipids, carbohydrates, and DNA, which results in oxidative stress 
(Gill and Tuteja 2010). ROS, including superoxide (O2

−), hydrogen peroxide (H2O2), 
hydroxyl radicals (OH−), and singlet oxygen (1O2), are produced in chloroplasts, 
mitochondria, endoplasmic reticulum (ER), plasma membranes, peroxisomes, apo-
plast, and cell walls under both normal and stress conditions (Sharma et al. 2012). 
To manage ROS, plant species have two defense mechanisms. The first mechanism 
is producing enzymatic antioxidants including superoxide dismutase (SOD), cata-
lase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehy-
droascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), 
glutathione peroxidase (GPX), guaiacol peroxidase (GOPX), and glutathione 
S-transferase (GST). The other mechanism is producing nonenzymatic antioxidants 
including ascorbic acid (AsA), glutathione (GSH), tocopherols, flavonoids, and pro-
line (Dar et al. 2017; Gill et al. 2011). Some antioxidant enzymes such as SOD, 
CAT, and POD eliminate ROS, whereas others such as GPX eliminate internal lipid 
peroxidation products. Glutathione S-transferase has a significant role in eliminat-
ing toxic secondary oxidation radicals (Timofeyev and Steinberg 2006).

15.4	 �Plant Growth-Promoting Rhizobacteria

Plant growth-promoting rhizobacteria (PGPR) are so named because they inhabit 
around or on root surfaces in the rhizosphere (Ahmad et al. 2008). These bacteria 
affect the plant life cycle both directly and indirectly. PGPR directly improve plant 
growth by the acquisition of essential minerals such as nitrogen and phosphorus. 
Also, they contribute to producing plant hormones such as auxins, cytokinins, and 
gibberellins. In addition, they produce the siderophore, an iron chelator and 1-amin
ocyclopropane-1-carboxylate (ACC)-deaminase, which reduces ethylene concen-
tration in plant tissues. Results from many studies about PGPR in both normal 
growth conditions and abiotic/biotic stress conditions showed that PGPR increased 
plant growth, productivity, and health in various plant species and cultivars.

15.5	 �Using PGPRs in Abiotic Stress Factors

The major cause of the decline in annual crops is the combined effects of abiotic 
stress factors. Farmers use aquifer-based irrigation intensively for crop production 
around the world, but this practice causes water scarcity and threatens the long-term 
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sustainability of agricultural areas. Excessive water use by the flood irrigation sys-
tem in arid and semi-arid lands results in salinization, which dramatically decreases 
crop yields. Extreme temperature levels are another main stress factor that limits 
plant growth and productivity: temperature is changed by global warming and cli-
mate change conditions. Intensive farm practices degrade soil structure and directly 
reduce agricultural production (Sharpley et al. 2015).

In fact, better management of agricultural areas can increase production effi-
ciency. There is no doubt that developing new resistant cultivars against salinity, 
drought, low and high temperatures, poor soil nutrient composition, and other abi-
otic stress factors is necessary to meet the future food demand, although to reduce 
the negative effects of salinity, drought, low and high temperatures, floods, and 
highly alkaline soil, the cultural practices are so expensive and sometimes 
insufficient.

In addition, even though resistant plant cultivar breeding takes a long time period 
and labor, it may not be the solution for all abiotic stresses in all plant cultivars. 
Currently, efficient PGPR applications are used to alleviate and eliminate these 
stress factors. These bacteria are classified into two groups of bacterial mechanisms. 
The first group has the ability to increase germination of seed and yield. The second 
group affects plant growth positively by indirect means such as biocontrol. PGPR 
promotes plant growth with nitrogen fixation, potassium and phosphate solubiliza-
tion, and siderophore production. The PGPR also produce auxins, cytokinins, and 
gibberellins and synthesizes ACC-deaminase to control ethylene under stress 
conditions.

The atmosphere includes approximately 78% nitrogen (N), a crucial nutrient for 
plant productivity. However, atmospheric N is an N2 form, which is not usable by 
plants. For plants to utilize atmospheric nitrogen, it is converted into suitable forms 
by nitrogen-fixing microbes using the nitrogenase enzyme system in the soil (Kim 
and Rees 1994). The N2-fixing microbes are classified as (a) symbiotic N2-fixing 
bacteria, including Rhizobiaceae family bacteria that live symbiotically with 
Leguminosae family plants (e.g., Rhizobia) and nonleguminous trees (e.g., Frankia), 
and (b) nonsymbiotic N2-fixing forms (free-living, associated, and endophytes) 
such as Cyanobacteria, Azospirillum, and Azotobacter (Bhattacharyya and Jha 
2012). Rhizobia is the microbe most used by plants for N2-fixing (Table 15.1).

Phosphorus is the second most significant element after nitrogen for plants and is 
also plentiful in soils (Ignatowicz 2017). Although phosphorus is found in abundant 

Table 15.1  Some N2-fixing 
bacteria strains

Plant growth-promoting 
rhizobacteria (PGPR) strains References
Azospirillum spp. Tien et al. (1979)
Azotobacter spp. Jack et al. (1953)
Azolla spp. Arora and Singh (2003)
Cyanobacteria spp. Meeks (1998)
Gluconacetobacter 
diazotrophicus

Urquiaga et al. (1992)

Rhizobia spp. Zahran (1999)
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quantities in the soil, the available form of P is generally low for plants (Bhattacharyya 
and Jha 2012). This low available P content causes P deficiency in plants. To over-
come P deficiency, frequent applications of synthetic phosphorus are used. However, 
synthetic fertilizers are less well absorbed by plants and part is rapidly converted into 
an insoluble form in soil (McKenzie and Roberts 1990). Applying phosphate fertil-
izers regularly not only has a higher cost but has also undesirable environmental 
effects. In this context, microbes (Table 15.2) with the ability of P-solubilizing are 
promising for plant fertilizers in soil having poor P content (Khan et al. 2007).

The rhizosphere includes macro- and microelements and has maximum micro-
bial activity (Burdman et al. 2000). Iron, a crucial element for the plant life cycle, is 
the fourth most abundant element in the Earth’s crust. Most iron is not in available 
forms for plant species. To acquire iron from the soil, iron is reduced from Fe+3 to 
Fe+2. Iron reduction occurs in soil in such ways as soil acidification through proton 
extrusion, iron chelation through secretion of complexing molecules such as sidero-
phores, phenolics, and carboxylic acids, and reduction through secretion of com-
pounds having reducing properties or reductase activity.

PGPR release siderophores that are low molecular weight, high-affinity Fe+3 che-
lators, to increase the availability of the iron for plant roots. Rhizobacteria such as 
Azotobacter, Bacillus, Enterobacter, Klebsiella, and Pseudomonas reduce Fe+3 to 
Fe+2, an available form for plant nutrition (Table 15.3).

Table 15.2  Phosphate-solubilizing bacteria (PSB) strains

PGPR strains Some reports up to 2018
Azotobacter spp. Kumar and Narula (1999)
Bacillus spp. Banerjee et al. (2010), Ipek et al. (2014), and Sharma et al. (2017)
Beijerinckia spp. Bhattacharyya and Jha (2012)
Burkholderia spp. Song et al. (2008)
Enterobacter spp. Bhattacharyya and Jha (2012)
Erwinia spp. Bhattacharyya and Jha (2012)
Pseudomonas spp. Premono et al. (1996) and Sharma et al. (2017)
Rhizobium spp. Rudresh et al. (2005)
Serratia spp. Bhattacharyya and Jha (2012)

Table 15.3  Siderophore-
producing bacteria strains

PGPR strains Some reports up to 2018
Azotobacter spp. Wani et al. (2007b)
Acinetobacter spp. Ahmad et al. (2008)
Bacillus sp. PSB10 Wani and Khan (2010)
Bravibacterium spp. Noordman et al. (2006)
Enterobacter 
asburiae

Ahemad and Khan (2010)

Klebsiella spp. Ahemad and Khan (2011)
Pseudomanas jessenii Rajkumar et al. (2008)
Rhizobium spp. Wani et al. (2007a)
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PGPR that produce plant growth regulators are important in the protection of 
plant species (Table 15.4). Most rhizobacteria can produce auxins and thus affect 
auxin level in plant roots; therefore, they increase plant growth significantly. The 
root system is generally affected by auxins. This relationship affects increasing size, 
weight, and the number of branch and root surfaces that contact with the soil. Root 
development increases plant ability to absorb nutrient elements (Gutierrez Manero 
et al. 1996).

The gibberellins have a similar effect as do auxins and cytokinins on plant 
growth. They are produced in the meristematic tissue of shoot and root and increase 
shoot elongation. Spray application of PGPR promotes shoot elongation (Esitken 
et al. 2006; Pirlak et al. 2007). The plants are held in rest status by abscisic acid 
(ABA) to survive under harsh or stress conditions.

ABA takes part in control of dormancy, seed germination, root growth, and guard 
cell action, and provides a significant response to salinity and cold. ABA inhibits 
root elongation because it can increase the plant root ability to take water from the 
soil. The ABA level increases in plants under drought or salinity stress conditions, 
and it promotes closing the stomata to prevent water loss. Because ABA is produced 
in terminal buds and roots, when the PGPR is applied by spraying and irrigation to 
plants, plants can respond to unsuitable environmental conditions (Table 15.5).

Ethylene is the gaseous formation of the plant hormone, synthesized under biotic 
and abiotic stress conditions such as water deficiency, saline soil/water, flooding, 
heavy metals, and pathogenicity. Ethylene negatively affects plant root growth and 
consequently plant growth totally. PGPR produce the ACC-deaminase enzyme, a 
vital enzyme that decreases and inhibits ethylene biosynthesis in the plant. When 
ethylene level increases in plants, the bacterial enzyme ACC-deaminase converts 

Table 15.4  Plant growth regulator-producing bacteria strains

Plant 
hormones PGPR strains Some reports up to 2018
Indole-3-
acetic acid

Aeromonas veronii, Agrobacterium 
spp., Alcaligenes piechaudii, 
Azospirillum brasilense, Rhizobium 
leguminosarum

Azzam et al. (2012), Sharma et al. 
(2016), Barazani and Friedman 
(1999), Molina et al. (2018), and 
Camerini et al. (2008)

Cytokinins Agrobacterium rubi A18, Bacillus 
megaterium M3, Paenibacillus 
polymyxa, Pseudomonas fluorescens

Esitken et al. (2003, 2010), Neris 
et al. (2017), and Großkinsky et al. 
(2016)

Zeatin and 
ethylene

Azospirillum spp. Perrig et al. (2007)

Gibberellic 
acid

Azospirillum lipoferum, Bacillus spp. Fulchieri et al. (1993) and Ipek et al. 
(2014)

Abscisic 
acid

Azospirillum brasilense Perrig et al. (2007)

ACC-
deaminase

Bacillus pumilus, Burkholderia 
cepacia, Enterobacter spp., 
Pseudomonas fluorescens, 
Pseudomonas spp.

Ali et al. (2017), Vial et al. (2011), 
Shaharoona et al. (2008), and 
Poonguzhali et al. (2008)
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ACC, a precursor of ethylene, to ammonia and α-ketobutyrate (Ali and Kim 2018). 
The bacterial strains Bacillus pumilus, Burkholderia cepacia, Enterobacter spp., 
and Pseudomonas spp. produce ACC-deaminase (Table 15.4).

Table 15.5 shows some selected new references about the PGPR mechanism in 
various plant species, especially field crops. In Table 15.5, references show PGPR 
treatments for salinity and drought were more studied than other stress factors. 
Under stress conditions, almost all bacterial species or strains used produce ACC-
deaminase and IAA production (Table 15.5). It was determined that PGPR with 
ACC-deaminase activity highly prevents the production of ethylene, which causes 
shoot and root elongation to decrease in the plant under stress condition, and plants 
continued to grow and develop at decreasing ethylene levels. Also, IAA production 
of PGPR can promote more root growth under stress condition and better plant 
growth could be obtained.

It is known that PGPR have the ability of N2-fixing, phosphate solubilization, 
and increasing availability of Fe, Zn, and Mn, increasing plant nutrition under stress 
conditions (Aras et al. 2018; Esitken et al. 2010; Ipek et al. 2014, 2018; Seymen 
et al. 2015). In addition, PGPR increases antioxidant enzyme activity and organic 
acid content and decreases the negative effects of ROS in apple and pear in high 
calcareous soil conditions (Aras et al. 2018; İpek et al. 2017).

PGPR treatments on different plants improved morphological features, physio-
logical parameters, biochemical properties, and plant nutrition. In these studies, 
plant height, shoot length, shoot diameter, root length, root number, fresh and dry 
plant weight, fresh and dry root weight, trunk diameter, leaf area, fruit yield, and 
germination rates were promoted by PGPR applications (Abd El-Daim et al. 2014; 
Delshadi et al. 2017; Hou et al. 2018; Hussain et al. 2018). In addition to morpho-
logical parameters, physiological and biochemical features and plant nutrition have 
been studied. Chlorophyll content, antioxidant enzyme activity, nonenzymatic anti-
oxidant content, proline content, protein content, membrane permeability, stomatal 
conductance, photosynthetic activity, amino acid content, organic acid content, 
plant growth regulators, and leaf relative water content (LRWC) have been affected 
positively by PGPR treatments (Hussain et al. 2018; Kakar et al. 2016; Kumar et al. 
2016).

The researchers reported that PGPR applications decreased the use of fertilizers 
such as N, P, and K under stressed and nonstressed conditions (Aras et al. 2018; 
Arıkan and Pırlak 2017; Esitken et al. 2010; İpek et al. 2017). Decreasing fertilizer 
use significantly reduces the possibility of secondary salinity occurrence. Thus, 
using PGPR could prevent the formation of salinity in the soil.

15.6	 �Conclusions and Future Prospects

Abiotic stress conditions are widespread and damaging in almost all agricultural 
crops. Most agricultural crops such as fruits, vegetables, grapes, and other dicot 
species are generally considered sensitive to abiotic stress conditions. There are 
some ways to cope with these stress factors such as using tolerant species, varieties, 
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Table 15.5  References about PGPR mechanisms under abiotic stress conditions

Bacteria species and/or 
strains Plant species Abiotic stress

Bacteria 
mechanism

Some 
reports up to 
2018

Pseudomonas fluorescens Pistacia Salinity ACC-deaminase 
activity, phosphate 
solubilization, 
siderophore 
production, IAA 
production

Azarmi et al. 
(2015)

Bacillus subtilis, 
Pseudomonas putida, P. 
fluorescens

Faba bean Salinity – Metwali 
et al. (2015)

Dietzia natronolimnaea 
STR 1

Wheat Salinity – Bharti et al. 
(2016)

Agrobacterium 
tumefaciens, Klebsiella 
spp., Ochrobactrum 
anthropi, Pseudomonas 
stutzeri

Peanut Salinity ACC-deaminase 
activity, phosphate 
solubilization, 
nitrogen fixing, 
IAA production, 
CAT activity

Sharma et al. 
(2016)

Serratia marcescens 
CDP-13

Wheat Salinity ACC-deaminase 
activity, phosphate 
solubilization, 
siderophore 
production, IAA 
production, 
nitrogen fixing, 
ammonia 
production

Singh and 
Jha (2016)

Bacillus subtilis EY2, 
Bacillus atrophaeus EY6, 
Bacillus spharicus EY30, 
Staphylococcus kloosii 
EY37, Kocuria 
erythromyxa EY43

Sweet cherry Salinity Phosphate 
solubilization, 
CAT activity, 
nitrogen fixing

Arıkan and 
Pırlak 
(2017)

Pseudomonas fluorescens 
FY37

Canola Salinity ACC-7deaminase 
activity

Bazyar et al. 
(2017)

Klebsiella sp. SBP-8 Wheat Salinity ACC-deaminase 
activity, phosphate 
solubilization, 
siderophore 
production, IAA 
production, 
gibberellic acid 
production, 
ammonia 
production, 
chitinase activity

Singh and 
Jha (2017)

(continued)
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Table 15.5  (continued)

Bacteria species and/or 
strains Plant species Abiotic stress

Bacteria 
mechanism

Some 
reports up to 
2018

Bacillus pumilus, 
Exiguobacterium sp. 
AM25

Tomato Salinity IAA production Ali et al. 
(2017)

Enterobacter sp. Rice Salinity ACC-deaminase 
activity

Sarkar et al. 
(2018a)

Novosphingobium sp. Citrus 
macrophylla

Salinity – Vives-Peris 
et al. (2018)Pseudomanas putida

Rhodopseudomonas 
palustris G5

Cucumber Salinity Phosphate 
solubilization, 
potassium 
dissolving, 
siderophore 
production, IAA 
production, 
aminolevulinic 
acid (ALA) 
production

Ge and 
Zhang 
(2019)

Pseudomonas koreensis Sunflower Drought ACC deaminase 
activity, 
siderophore 
production, IAA 
production, 
chitinase activity

Macleod 
et al. (2015)

Bacillus thuringiensis Soybean Drought Nitrogen fixing Prudent 
et al. (2015)Bradyrhzobium 

japonicum
Citrobacter freundii Tomato Drought ACC deaminase 

activity, phosphate 
solubilization, 
siderophore 
production, IAA 
production, 
chitinase activity

Ullah et al. 
(2016)

Bacillus 
amyloliquefaciens

Rice Drought Phosphate 
solubilization, 
siderophore 
production, IAA 
production

Kakar et al. 
(2016)

Brevibacillus 
laterosporus

Pseudomonas putida Chickpea Drought ACC-deaminase 
activity, phosphate 
solubilization, 
siderophore 
production, IAA 
production

Kumar et al. 
(2016)Bacillus 

amyloliquefaciens

(continued)
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Table 15.5  (continued)

Bacteria species and/or 
strains Plant species Abiotic stress

Bacteria 
mechanism

Some 
reports up to 
2018

Rhizobium phaseoli Mungbean Drought – Kumari and 
Chakraborty 
(2017)

Pseudomonas 
agglomerans

Avena sativa Drought – Delshadi 
et al. (2017)

Pseudomonas putida
Azospirillum lipoferum Wheat Drought – Kanwal 

et al. (2017)
Pseudomonas putida 
FBKV2

Maize Drought – Skz et al. 
(2018)

Enterobacter aerogenes 
S-10, B. thuringiensis 
S-26, Streptococcus 
pluranimalium S-29, P. 
stutzeri S-80, B. 
amyloliquefaciens S-134, 
B. pumilus S-137, B. 
simplex D-1, B. 
thuringiensis D-2, B. 
muralis D-5, B. simplex 
D-11

Wheat Drought IAA production Raheem 
et al. (2018)

Bacillus subtilis, Bacillus 
thuringiensis, Bacillus 
megaterium

Chickpea Drought Phosphate 
solubilization, 
CAT activity

Khan et al. 
(2018)

Bacillus cereus, Bacillus 
subtilis, Bacillus 
thuringiensis

Soybean Drought Grow in media 
reduced water 
activity

Martins 
et al. (2018)

Bacillus methylotrophicus Cucumber Drought – Hou et al. 
(2018)

Rhizobium phaseoli Chickpea Drought Phosphate 
solubilization, 
siderophore 
production, IAA 
production, CAT 
activity, peroxidase 
activity, organic 
production

Hussain 
et al. (2018)

Pseudomanas putida Elsholtzia 
splendens

Heavy metal IAA production Xu et al. 
(2015)

Pleum phleoides, 
Trifolium repens

Brassica 
oxyrrhina

Heavy metal ACC deaminase 
activity, IAA 
production,

Ma et al. 
(2016)

Azotobacter Lepidium 
sativum

Heavy metal – Sobariu 
et al. (2017)

(continued)
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Table 15.5  (continued)

Bacteria species and/or 
strains Plant species Abiotic stress

Bacteria 
mechanism

Some 
reports up to 
2018

Bacillus sp., 
Stenotrophomonas sp.

Radish Heavy metal ACC deaminase 
activity, 
siderophore 
production, IAA 
production, CAT 
activity, EPS 
production

Akhtar et al. 
(2018)

Azotobacter chroococcum Maize Heavy metal ACC deaminase 
activity, 
siderophore 
production, IAA 
production, 
ammonia 
production, HCN 
production

Rizvi and 
Khan (2018)

Enterobacter sp. Rice Heavy metal Phosphate 
solubilization, 
nitrogen fixing, 
IAA production, 
HCN production

Mitra et al. 
(2018)

Azospirillum brasilense, 
Bacillus 
amyloliquefaciens

Wheat High 
temperature

– Abd 
El-Daim 
et al. (2014)

Bacillus subtilis Okra High 
temperature

– Mathiba 
et al. (2017)

Bacillus safensis, 
Ochrobactrum 
pseudogrignonense

Wheat High 
temperature

– Sarkar et al. 
(2018b)

Bacillus sp., Serratia sp. Pigeon pea High 
temperature

Siderophore 
production, IAA 
production, 
flavonoid 
production

Modi and 
Khanna 
(2018)

Bacillus aryabhattai, 
Bacillus siamensis

Chinese 
cabbage

High 
temperature

– Yoo and 
Sang (2018)

Bradyrhzobium 
japonicum

Soybean Low 
temperature

– Zhang and 
Smith 
(1994)

Rhizobium 
leguminosarum

Lentil Low 
temperature

– Lee (2009)

Serretia nematodiphila Pepper Low 
temperature

– Kang et al. 
(2015)

Bacillus sp. Raspberry Low 
temperature

– Belyaev 
et al. (2017)

(continued)

M. İpek et al.



www.manaraa.com

307

and rootstocks. In addition, some agricultural practices such as using drip irrigation, 
chemical fertilization, greenhouses, agricultural machinery, and drainage systems. 
However, these applications could not succeed in all stress condition and their costs 
are rather high. On the other hand, using more chemical fertilizers causes environ-
mental concerns. In this regard, sustainable agricultural techniques and biofertiliza-
tion could be a solution, just as PGPR can appear to decrease sensitivity to these 
stress conditions. PGPR can increase plant tolerance by producing some plant 
growth regulators, ACC-deaminase, siderophores, and releasing organic acids. In 
current studies about PGPR applications, root inoculation significantly affected 
plants to tolerate abiotic stress conditions. In the future, the PGPR mechanism 
should be studied on abiotic stress conditions.
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